BMJ Paediatrics Open

Probiotics and the development of very low birthweight infants: follow-up study of a randomised trial

Satsuki Totsu, Masaki Terahara,¹ Satoshi Kusuda,² on behalf of the Probiotics Study Group in Japan

Abstract

To cite: Totsu S, Terahara M, Kusuda S, *et al.* Probiotics and the development of very low birthweight infants: followup study of a randomised trial. *BMJ Paediatrics Open* 2018;**2**:e000256. doi:10.1136/ bmjpo-2018-000256

Additional material is published online only. To view, please visit the journal online (http://dx.doi.org/10.1136/ bmjpo-2018-000256).

Received 16 January 2018 Revised 7 March 2018 Accepted 10 March 2018

 ¹Food Science Research Laboratories, Meiji Co., Ltd., Odawara, Japan
 ²Maternal and Perinatal Center, Tokyo Women's Medical University, Tokyo, Japan

Correspondence to

Dr Satsuki Totsu, Maternal and Perinatal Center Tokyo Women's Medical University, Tokyo, Japan; totsu.satsuki@twmu. ac.jp **Objective** To investigate the effect of *Bifidobacterium bifidum* OLB6378 on the development of very low birthweight (VLBW) infants at 18 months of corrected age. **Design** Long-term follow-up study of a clusterrandomised, placebo-controlled trial.

Patients VLBW infants (birth weight <1500 g) born between January 2010 and March 2011 and managed at 19 neonatal intensive care unit facilities assigned to two groups to account for the effect of probiotic crosscontamination within facilities.

Interventions For VLBW infants, administration of OLB6378 as a probiotic was started within 48 hours of birth and continued until the body weight reached 2000 g.

Main outcome measures At 18 months of corrected age, physical status and developmental quotient (DQ18) were assessed. The distribution of DQ18 scores was categorised into four levels of development: <70, significant developmental delay; 70–84, moderate developmental delay; 85–99, without developmental delay; ≥100, average development or better.

Results Among 153 infants assigned to the 0LB6378 administration group and 130 assigned to the placebo administration group, 102 and 105 infants, respectively, underwent the 18-month medical examination. The distribution of developmental levels (DQ18 scores <70, 70–84, 85–99 and \geq 100) was significantly more favourable for 0LB6378 administration (12, 12, 25 and 40 infants, respectively) than for placebo administration (15, 17, 23 and 24 infants, respectively) (ordered logistic regression analysis: partial correlation coefficient, 0.589; P value, 0.038).

Conclusions Although limited by assessment rates, result suggests that 0LB6378 may have a beneficial effect on the psychological development in VLBW infants. **Clinical trial registration** UMIN000002543.

INTRODUCTION

Many clinical studies have investigated the effectiveness of early *Bifidobacterium* administration in establishing a normal intestinal microbiota in preterm infants,^{1–4} but without focusing on the time to establishment of enteral feeding or on psychological development. In our first clinical study of preterm infants who received *Bifidobacterium bifidum* OLB6378 as a probiotic, we found that the

What is already known on this topic?

- Probiotics have an effect in gut-related illnesses.
 Probiotics administration can help very low
- birthweight infants achieve enteral feeding sooner.
 The gut-brain axis links the enteric and central
- The gut-brain axis links the enteric and central nervous systems.

What this study hopes to add?

Early administration of *Bifidobacterium bifidum* OLB6378 may improve psychological development (developmental quotient at 18 months of corrected age) among very low birthweight infants.

rate of weight gain was significantly higher in infants started on OLB6378 within 48 hours after birth than in those started on OLB6378 at a later time.⁵ A subsequent multicentre study initially reported that OLB6378 accelerated the establishment of enteral feeding without increasing morbidity, and reduced the incidence of late-onset sepsis in very low birth weight (VLBW) infants.⁶ A long-term study was thus initiated based on the hypothesis that, by improving enteral feeding, **OLB6378** administration can improve psychological development in VLBW infants. The aim of the present investigation was to report the physical status and developmental quotient of VLBW infants, who participated in the previous study, at 18 months of corrected age.

METHODS

Study design and participants

It was speculated that probiotics could be easily spread among infants admitted in the same neonatal intensive care unit (NICU) according to our previous study.⁶ Therefore, in order to completely avoid infant-to-infant dissemination of OLB6378 within the same NICU, the study was conducted as a cluster-randomised trial. The present study is a follow-up investigation of a large cluster-randomised clinical trial that included 19 NICU facilities in Japan.⁶ Detailed protocols were described in the initial evaluation.⁶ Briefly, infants born between January 2010 and March 2011 with a birth weight <1500 g were enrolled. The exclusion criteria were: lack of parental consent, presence of major congenital malformation, systemic infection or failure to start OLB6378 or placebo administration within 48 hours of birth due to a clinical condition that precluded oral administration. To account for the effect of potential cross-contamination and infant-to-infant dissemination of OLB6378 within the same NICU, the study was conducted as a cluster-randomised trial that divided the 19 participating facilities into OLB6378 administration facilities and placebo administration facilities, none of which had any prior experience in the administration of probiotics to new borns.

The primary outcomes were the age (in days) at which the volume of enteral nutrition reached 100 mL/kg/ day, as well as body weight and head circumference at discharge. The secondary outcomes were: incidence of necrotising enterocolitis and sepsis; physical and mental development at 18 months of age and intestinal microbiota colonisation (evaluated based on stool samples) at birth, at 1 week after birth and at 1 month after birth. All outcome measures were chosen prior to initiating the study.

Randomisation and masking

The 19 NICU facilities were cluster-randomised to one of two study groups. Briefly, the facilities were paired according to the number of infants hospitalised in 2009. A computer program was used to generate a random number for each facility. Subsequently, each facility was allocated to one of two study groups based on whether the assigned number was higher or lower than the number assigned to the paired NICU facility.

The randomisation allocation sequence was concealed by Tokyo Women's Medical University. OLB6378 powder and placebo powder (masked) were provided by Meiji, and the intervention was concealed by Meiji. Assessments were performed at each facility, and all data were sent to Tokyo Women's Medical University.

After all infants were discharged from the NICUs and their short-term outcomes were recorded, the randomisation allocation sequence was revealed and the results were reported.⁶ However, the 18-month medical examination was performed by blinded examiners. Because of the study design, individual data were compared based on the initial treatment, and not based on the clustering scheme.

Procedures

For infants born at OLB6378 administration facilities (the OLB6378 administration group; B-group), 0.25 g of OLB6378 powder (Meiji) consisting of dextrin as the vehicle and approximately 5×10^9 cfu/g of OLB6378

dissolved in 0.5 mL of breast milk, infant formula or warm water (if enteral feeding had not been introduced) were delivered into the stomach through an enteral feeding tube. Administration was started within 48 hours after birth and performed twice daily until the infant's weight reached 2000g. For infants born at placebo administration facilities (the placebo administration group; P-group), 0.25g of placebo powder consisting of dextrin dissolved in 0.5 mL of breast milk, infant formula or warm water was administered. Treatment and nutrition were otherwise given according to conventional practice in each NICU.

Assessment of psychological development

The Kyoto Scale of Psychological Development 2001 (KSPD) is the primary method used for developmental assessment of children in Japan, and has recently been shown to correlate with the Bayley III scale.⁷⁸ The developmental age is determined based on the score calculated for each of the three KSPD domains (posture and movement; cognition and adaptation; language and social ability). In the present analysis, the developmental quotient at 18 months of corrected age (DQ18) was calculated as the percentage ratio between developmental and chronological age. The distribution of developmental levels was defined in terms of the DQ18 scores:<70, significant developmental delay; 70-84, moderate developmental delay; 85-99, without developmental delay; ≥ 100 , average development or better. At the examination, infants with severe neurological damage, for whom developmental testing was not feasible, were considered to have DQ18 <70. On the other hand, for infants with obviously favourable psychological development, per the checklist included in the Maternal and Child Health Handbook issued by the Japan Ministry of Health, Labour and Welfare, developmental testing was considered unnecessary; these infants were considered to have DQ18 ≥100.

Outcome measures

Body weight, body length, head circumference and prevalence of physical impairment at the 18-month medical check-up were compared in infants who underwent medical examination between September 2011 and March 2013. Cerebral palsy was defined for Gross Motor Function Classification System level II or greater.⁹ Hearing impairment was defined if hearing aids were required, while visual impairment was defined if vision in both eyes was lost. Additionally, the two groups were compared in terms of the distribution of developmental levels (DQ18 values).

Statistical analysis

The target sample sizes of 153 infants for the treatment group and 130 infants for the placebo group were described previously.⁶ Student's t-test was used to compare variables that demonstrated normality and equal variance of the distribution, with results presented as mean±SD.

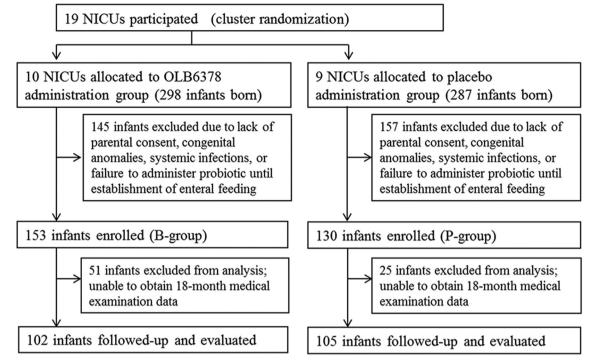


Figure 1 Study flow chart. NICU, neonatal intensive care unit.

The Mann-Whitney U test was used to compare variables for which normality and equal variance of the distribution could not be confirmed, with results presented as median (IQR). To compare categorical data, Fisher's exact test was used. To evaluate treatment effect size, linear regression and logistic regression models were used for quantitative and categorical variables, respectively, and the results were expressed as the partial regression coefficient and OR with 95% CI, respectively. Another ordered logistic regression model was established to calculate a partial correlation coefficient between the intervention and distribution of developmental levels. All tests were conducted using SPSS V.22.0 (SPSS, Chicago, Illinois, USA). Statistical significance was set at a threshold of 0.05.

RESULTS

Study participants

Of 19 NICU facilities included in the study, 10 were assigned to administer OLB6378, and 9 were assigned to administer placebos (figure 1). The total number of infants enrolled was 153 in the B-group and 130 in the P-group; of these, 102 and 105 infants, respectively, underwent the 18-month medical examination and were analysed (see online supplementary table 1). Adverse events that occurred during the study period were described previously.⁶ There were no side effects related to the intervention.

Background data and characteristics were found to be broadly similar between the two groups of infants who underwent the 18-month medical examination (table 1), which corresponds to the findings of the initial evaluation of this trial.⁶ However, Apgar scores at 1 and 5 min, the rate of caesarean delivery and the incidence of intraventricular haemorrhage differed significantly between the groups (table 1). Background characteristics including neonatal morbidities and interventions were not different between infants evaluated and not evaluated at 18-month medical examination among four groups (see online supplementary table 2).

Following the same approach as in the initial evaluation of this trial,⁶ a between-group comparison of the time to establishment of enteral feeding was performed considering only infants who achieved enteral feeding by 21 days of age. The time until establishment of enteral feeding was significantly shorter in the B-group (n=80; median age, 10 days; IQR for age, 8–13 days) than in the P-group (n=91; median age, 11 days; IQR for age, 9–14 days) (Mann-Whitney U test; P=0.032), which was also noted in the previous report.⁶

Outcomes at the 18-month medical check-up

At the 18-month follow-up (table 2), there were no significant differences between the groups in body weight, body length, head circumference, oxygen use, incidence of cerebral palsy or mean DQ18 scores (among the infants whose scores were obtained, not inferred). However, the range of DQ18 scores was very wide. We thus calculated the distribution of developmental levels in each group; in this analysis, we also included the infants whose scores were only inferred, not calculated (because developmental testing was either not feasible or considered unnecessary). We found significant between-group differences in the distribution of developmental levels, with more favourable development among infants in the

	OLB6378 administration group	Placebo administration group	
Characteristic	(n=102)	(n=105)	P value
At enrolment			
Gestational age, weeks	28.7±3.1	28.4±3.0	0.568*
Birth weight, g	1036±289	994±283	0.297*
Light-for-dates, n (%)	35 (34)	41 (39)	0.564†
Head circumference at birth, cm	25.5±2.6	25.6±2.7	0.773*
Use of antenatal steroids, n (%)	37 (36)	49 (47)	0.158†
Caesarean section delivery, n (%)	47 (46)	85 (81)	<0.001†
Male sex, n (%)	60 (59)	58 (55)	0.674†
Apgar score at 1 min	6.0 (4.0, 8.0)	5.0 (3.0, 7.0)	0.003‡
Apgar score at 5 min	8.0 (8.0, 9.0)	7.0 (6.0, 9.0)	0.001‡
Respiratory distress syndrome, n (%)	68 (67)	68 (65)	0.769†
Chronic lung disease, n (%)	56 (55)	49 (47)	0.267†
Intraventricular haemorrhage, n (%)	10 (10)	23 (22)	0.022†
Grade III or IV, n (%)	2 (2)	3 (3)	1.000†
Periventricular leukomalacia, n (%)	3 (3)	5 (5)	0.721†
Late-onset sepsis, n (%)	6 (6)	12 (11)	0.218†
Use of total parenteral nutrition, n (%)	83 (81)	94 (90)	0.115†
Treatment for retinopathy of prematurity, n (%)	15 (15)	21 (20)	0.365†
Age at enteral feeding exceeding 100 mL/kg/day, days	11.0 (9.0, 17.0)	12.0 (9.5, 16.0)	0.654‡
Infants who achieved it by 21 days of age, n (%)	80 (78)	91 (87)	0.143†
Infants who achieved it by 21 days of age, days	10.0 (8.0, 13.0)	11.0 (9.0, 14.0)	0.032‡
At the 18-month medical check-up			
Age, years	1.71±0.16	1.71±0.15	0.686*
Corrected age, years	1.51±0.17	1.51±0.13	0.943*

Values are expressed as mean±SD, median (first quartile, third quartile) or number (frequency).

*Student's t-test.

†Fisher's exact test.

#Mann-Withney U test.

B-group (partial correlation coefficient, 0.589; P=0.038) (see table 2, online supplementary figure 1).

Subgroup analyses

To evaluate the treatment effect in subgroups of infants defined by certain baseline characteristics, we chose several background risk factors including gestational age, birth weight, light-for-dates status, delivery mode, Apgar scores, antenatal steroid use, sex, establishment of total parenteral nutrition and age at full enteral feeding. The differences between subgroups were calculated, as well as the partial correlation coefficient between the distribution of developmental levels and each risk factor, based on the ordered logistic regression model (table 3). Significantly more favourable development was noted in the B-group than in the P-group subgroups, among the infants with a birth weight ≥ 1000 g, gestational age ≥ 28 weeks, caesarean delivery, antenatal steroid use, female sex or ≥ 13 days until full enteral feeding (see table 3, online supplementary figure 1).

DISCUSSION

Among this population of VLBW infants, the distribution of developmental outcomes at 18 months of age was significantly more favourable after OLB6378 administration, with a more pronounced benefit among infants with certain characteristics. The consistency between our present findings and those of the initial evaluation⁶ suggests that VLBW infants administered *Bifidobacterium* during the NICU stay retained the potential beneficial effects of the treatment well past the 18-month follow-up visit.

Cormack *et al* reported that enteral protein intake in the 2 weeks after birth was positively correlated with neurological development,¹⁰ but speculated that healthy infants received more nutritional support because they were deemed to be less sick and better able to tolerate higher nutritional intake. Although *Bifidobacterium* administration clearly accelerated the establishment of enteral feeding, we found no between-group difference in body weight, body length or head circumference at the 18-month medical

 Table 2
 Outcomes at the 18-month medical check-up

	OLB admi (n=10	nistration	Place admi (n=10	nistration	Regression	analysis	*	
Outcome	n	n (%) Mean±SD	n	n (%) Mean±SD	Partial correlation coefficient		95% CI	P values
Body weight, kg	98	9.3±1.7	103	9.2±1.2	0.177†		– 0.277 to 0.581	0.390
Body length, cm	97	77.1±4.3	103	77.2±4.2	-0.148†		-1.333 to 1.038	0.806
Head circumference, cm	80	46.3±2.2	93	46.5±1.8	-0.259†		-0.864 to 0.347	0.401
Use of O ₂ , n (%)	102	6 (6)	102	6 (6)		1.000‡	0.311 to 3.210	1.000
Cerebral palsy, n (%)	100	4 (4)	100	10 (10)		0.375‡	0.114 to 1.238	0.108
Developmental test	89		79					
DQ18 score	54	90.6±12.5	65	91.1±14.4	-0.443†		-5.384 to 4.499	0.859
Distribution of developmental levels§	89	3.0±1.1	79	2.7±1.1	0.589¶		0.034 to 1.144	0.038
DQ18 score <85 or developmental test was unfeasible, n (%)	89	24 (27)	79	32 (41)		0.542‡	0.283 to 1.038	0.065

Use of O₂ use of oxygen postdischarge (this include all discharged for home oxygen).

*Treatment effect.

†Linear regression analysis.

‡Logistic regression analysis.

§Developmental levels were determined in terms of the DQ18 scores, which were either computed or inferred (if

developmental testing was unfeasible or unnecessary).

¶Ordered logistic regression analysis.

DQ18, developmental quotient at 18 months of corrected age.

examination, which suggests that OLB6378 may simply promote the absorption of nutrients in the early postnatal period. Future research should examine the exact relationship between OLB6378-induced acceleration of enteral feeding in the early postnatal period (in particular, the absorption of nutrients such as docosahexaenoic acid and arachidonic acid) and potentially related acceleration of physical and neurological development.

Subgroup analyses with different background risk factors showed significantly better development for OLB6378 administration than for placebo administration among the infants with birth weight ≥ 1000 g or gestational age ≥ 28 weeks. Both birth weight and gestational age are known to be strong risk factors for impaired neurodevelopmental outcomes. Interestingly, in this investigation, relatively bigger infants showed more beneficial effects, probably due to the fact that such infants were generally less sick compared with others. In very sick infants, we expect it would be difficult to promote enteral nutrition even with Bifidobacterium. The probiotic benefit was also noted for the infants who achieved full enteral feeding within <13 days from birth. As antenatal steroid use is known to promote the maturation of intestinal function, combining antenatal steroids with postnatal probiotics may have a synergic effect on intestinal maturation among VLBW infants.

We found that the distribution of developmental levels was more favourable for probiotic administration than for placebo administration among female infants, which was reflected in the incidence of cerebral palsy in these subgroups (B-group subgroup, 0 of 42 infants; P-group subgroup, 6 of 38 infants; P=0.030). It was previously reported that, in term small-for-dates infants, male sex was associated with a greater incidence of severe developmental disability, which was correlated with the IQ score at 4, 6 and 8 years of age.¹¹ Lucas et al reported major loss of cognitive potential only in preterm male infants who drank standard milk formula.¹² Interestingly, our present investigation found that neurological development is not affected by OLB6378 administration in male infants. Our results may support a previous study reported that, of 75 full-term children who predominantly harboured Bifidobacterium in the intestine during infancy, all 6 children diagnosed with a neuropsychiatric disorder were male.¹³

Maintaining a beneficial intestinal microbiota by administration of OLB6378 may contribute to neurological development through the brain-gut interaction, which is supported by our finding that this benefit is more prominent in infants delivered by caesarean section. Certain strains of intestinal bacteria have been associated with the development of autism,¹⁴ and faecal levels of *Bifidobacterium* in children with autism are known to be low.^{15 16} Mouse models of autism have also demonstrated the effectiveness of probiotic treatment with certain bacterial strains.¹⁷ Interestingly, plasma adrenocorticotropic hormone and corticosterone elevation in response

Open Access

Less Less Cuess C		DQ18	DQ18 scores						Distrib	Distribution of developmental levels*	pment	al levels*			
MemarSD MemarSD </th <th></th> <th>OLB6 admir</th> <th>378 vistration</th> <th>Place</th> <th>ebo nistration</th> <th>Mean</th> <th></th> <th></th> <th>OLB63 admini</th> <th>378 istration</th> <th>Placet</th> <th>oo istration</th> <th>Partial</th> <th></th> <th></th>		OLB6 admir	378 vistration	Place	ebo nistration	Mean			OLB63 admini	378 istration	Placet	oo istration	Partial		
90.64:123 -1.4 -7.7 to 4.9 0.657 4.3 2.8±1.1 3.4 2.7±1.0 0.033 0.565 to 10.06 91.34:15.5 0.9 -7.7 to 4.9 0.657 4.5 2.4±1.1 3.4 0.23 0.565 to 10.06 91.34:15.5 1.1 -7.8 to 56 0.700 0.865 4.6 3.4±0.9 3.2 2.7±1.1 0.035 0.755 to 1591 9.40±14.9 0.1 -7.5 to 7.3 0.866 4.9 3.4±0.9 3.2 2.7±1.2 1.083 0.755 to 1591 9.40±14.9 0.1 -7.5 to 7.3 0.866 3.0 3.0±1.1 5.2 2.7±1.2 1.083 0.255 to 1591 9.40±14.6 1.1 -7.5 to 7.3 0.864 3 3.1±1.1 5.1 2.7±1.2 0.364 0.255 to 1591 9.41±14.6 1.8 -5.5 to 101 0.53 0.524 3.1±1.1 5.1 2.4±1.1 0.354 0.156 to 169 9.41±14.6 3.4 9 3.1±1.1 51 2.4±1.1 0.331 0.256 to	Subgroup		Mean±SD		Mean±SD	difference	95% CI	P value†	2	+1	2	+	-	95% CI	P value‡
0.08±123 1.4 7.10.4.3 0.657 4.3 2.8±1.1 3.4 2.7±1.0 0.23 0.565 b. 10.36 19.13±153 0.1 7.10.6.8 0.855 0.235 0.335 0.1565 b. 0.735 0.335 b. 0.735 10.940±14.4 0.1 7.21 b. 5 0.346 0.2 2.7±1.0 0.035 0.756 b. 0.736 10.940±14.4 0.1 7.51 b. 4.3 0.346 3 3.1±1.1 51 2.8±1.1 0.656 0.256 b. 10.66 10.940±136 1.2 5.51 b. 4.3 0.546 53 3.1±1.1 51 2.8±1.1 0.656 0.256 b. 1261 10.94138 1.8 5.51 b. 4.3 0.546 53 3.1±1.1 51 2.8±1.1 0.532 0.156 b. 0.266 0.144 b. 0.23 10.941318 1.8 551 b. 4.4 0.301 52 2.4±1.1 0.532 0.256 b. 0.566 0.566 b. 0.266 10.941413 1.8 551 b. 3.1 0.301 52 2.4±1.1 0.133 0.256 b. 0.266 0.266 b. 0.266	Gestational a	ge													
91.3±150 0.9 -7.0 to 8.8 0.825 4.6 3.3±1.0 4.5 2.7±1.1 0.0156 to 1.260 88.6±136 -1.1 -7.2 to 7.5 0.966 0.740 0.765 to 1.891 0.756 to 1.891 9.44±14.5 0.1 -7.2 to 7.5 0.966 0.740 3.4±0.9 3.4±1.1 0.056 0.756 to 1.891 9.44±14.5 1.2 -7.2 to 7.5 0.966 30 3.0±1.1 28 2.7±1.1 0.056 0.256 to 1.642 9.40±17.5 1.2 -8210 to 1.0 0.766 30 3.0±1.1 28 2.6±1.1 1.068 0.256 to 1.642 9.40±17.3 4.9 -14.4104.45 0.301 52 2.9±1.1 1.063 0.256 to 1.642 9.40±17.3 4.9 -14.4104.45 0.301 52 2.9±1.1 0.199 0.756 to 1.642 9.40±17.3 4.9 -14.4104.45 0.301 52 2.9±1.1 0.199 0.766 to 1.864 9.40±17.3 4.9 -14.4104.45 0.301 52 2.9±1.1	<28 weeks	30	89.4±11.6	28	90.8±12.3	-1.4	-7.7 to 4.9	0.657	43	2.8±1.1	34	2.7±1.0	0.23	-0.585 to 1.046	0.580
BB6±13 -11 -781656 0740 40 27±11 40 27±12 1.066 -078510.0781 9,40±14.9 0.1 -7.2107.3 0.966 49 3.4±0.9 39 2.7±1.2 1.063 0.27510.1.601 9,40±14.9 0.1 -7.2107.3 0.966 30 3.4±1.1 51 2.6±1.1 0.656 -0.2601016.62 9,24±17.5 1.2 -8.210.05 0.794 53 3.4±1.1 51 2.6±1.1 0.656 -0.2601016.62 9,44±17.5 1.2 -14.4104.6 0.301 52 2.4±1.1 51 0.354101661 9,44±17.5 1.4 -14.4104.6 0.301 52 2.4±1.1 66 -0.266101667 9,44±17.5 4.9 -14.4104.6 0.301 52 2.4±1.1 67 0.256101667 9,44±17.5 4.9 -14.4104.6 0.301 52 2.4±1.1 0.59 0.266101667 9,44±17.5 4.9 1.5 2.6±1.1 1.1 2.6±1.1 <td< td=""><td>≥28 weeks</td><td>24</td><td>92.1±13.6</td><td>37</td><td>91.3±15.9</td><td>0.9</td><td>-7.0 to 8.8</td><td>0.825</td><td>46</td><td>3.3±1.0</td><td>45</td><td>2.7±1.2</td><td>0.939</td><td>0.158 to 1.720</td><td>0.018</td></td<>	≥28 weeks	24	92.1±13.6	37	91.3±15.9	0.9	-7.0 to 8.8	0.825	46	3.3±1.0	45	2.7±1.2	0.939	0.158 to 1.720	0.018
86±136 1.1 -7.810.56 0.740 40 2.7±1.1 40 2.7±1.2 1.085 0.795 to 0.795 0.795 0.795 0.795 0.795 0.795 0.795 0.795 0.795 0.795 0.795 0.795 0.795 0.795 0.795 0.795 0.795 0.779 0.779 0.779 0.275 0.106 0.275 0.191 0.275 0.191 0.275 0.191 0.275 0.191 0.275 0.191 0.275 0.191 0.275 0.191 0.275 0.191 0.275 0.191 0.275 0.191 0.275 0.191 0.275 0.106 0.275 0.126	Birth weight														
9 9 3 1 -7.2 to 7.3 0.966 49 3.4±0.9 35 2.7±12 1.083 0.275 to 1.891 1 8 -15 -55 to 13 0.796 3.0±11 26 -0.250 to 16.62 1 1.6 -55 to 43 0.584 59 3.1±11 51 2.6±11 0.696 -0.250 to 16.62 9.04±138 1.8 -55 to 94 0.648 37 3.2±11 68 2.6±11 1093 0.354 to 1269 9.04±138 1.8 -55 to 91 0.648 37 3.2±11 68 2.6±11 1093 0.354 to 1369 9.04±138 1.8 -10.3 to 35 0.339 0.66 31±11 21±1 0.51 0.56 0.161 to 1265 9.04±138 1.5 -10.3 to 35 0.339 0.324 to 1365 0.324 to 1367 9.04±136 1.5 -10.3 to 35 0.339 0.324 to 1367 0.334 0.324 to 1367 9.04±136 1.5 -11.2 to 14 0.129 2.8±11	<1000 g	28	87.4±12.7	35	88.6±13.6	Ţ.	-7.8 to 5.6	0.740	40	2.7±1.1	40	2.7±1.0	-0.006	-0.795 to 0.783	0.988
88.7±15.5 1.2 -8.2 to 10.6 0.796 3.0 ±1.1 2.8 2.6±1.1 0.696 -0.250 to 1642 9.0 ±15.6 -1.6 -7.5 to 4.3 0.544 59 3.1±1.1 51 2.8±1.1 0.532 -0.154 to 1218 9.0 ±13.6 1.6 -5.5 to 4.3 0.544 59 3.1±1.1 51 2.8±1.1 0.532 0.154 to 0.334 9.0 ±17.3 4.9 -10.3 to 3.0 0.54 3.2±1.1 68 2.6±1.1 1.093 0.324 to 1305 9.4 ±14.6 -3.4 -10.3 to 3.6 0.339 66 3.1±1.1 31 2.9±1.1 1.093 0.354 to 1305 9.4 ±14.6 -3.4 -10.3 to 3.6 0.339 66 3.1±1.1 31 2.1±5.0 0.161 to 2.056 9.8 ±14.1 1.5 -6.2 to 14 0.690 2.2 ±1.1 0.31 0.331 to 10.25 9.2 ±14.2 0.49 2.6 ±1.1 48 2.8±1.1 0.31 0.353 to 10.25 9.2 ±14.5 -4.9 0.110 2.2 2.9±1.1	≥1000g	26	94.0±11.5	30	9.40±14.9	0.1	-7.2 to 7.3	0.986	49	3.4±0.9	39	2.7±1.2	1.083	0.275 to 1.891	0.009
88.7±155 1.2 -82.0±10.6 0.75 3 3.1±11 5 2.6±1.1 0.696 -0.250 tb 1642 9.26±136 -1.6 -7.5 tb 4.3 0.84 5 3.1±1.1 5 0.324 tb 1861 9.04±138 1.8 -59 tb 9.4 0.648 37 3.2±1.1 6 0.324 tb 1861 9.04±138 1.8 -59 tb 9.4 0.648 37 3.2±1.1 6 0.324 tb 1861 9.04±138 1.8 -59 tb 9.4 0.648 37 3.2±1.1 6 0.266 tb 16.42 9.04±136 -3.4 -10.3 tb 3.2 0.39 66 3.1±1.1 8 0.561 tb 0.394 9.04±13 1.5 -011 tb 15.2 0.39 66 3.1±1.1 8 2.6±1.1 0.193 0.756 tb 0.1364 9.21±15.0 4.9 -011 tb 15.2 0.156 0.156 tb 0.166 0.033 tb 1.102 9.21±15.0 4.9 2.6±1.1 4.8 2.6±1.1 0.193 -0.266 tb 0.166 9.21±16.1 4.9 2.6±1.1	Light-for-date	S													
92.6±136 -16 -7.5 to 4.3 0.584 59 3.1±1.1 51 2.8±1.1 0.532 -0.154 to 1218 90.4±138 1.8 -59 to 9.4 0648 37 3.2±1.1 68 0.324 to 1861 9.4.9±17.3 -49 -10.3 to 3.0 0.53 0.54 0.75 -1.454 to 0.334 9.4.9±17.3 -49 -10.3 to 3.6 0.33 66 3.1±1.1 81.9 0.56 -1.454 to 0.334 9.4.9±17.4 0.5 -0.13 to 3.6 0.33 66 3.1±1.1 81.9 0.56 0.166 to 0.84 9.9.1±16.0 1.5 -0.10 to 152 0.59 2.2±1.1 4.8 2.6±1.1 0.191 -0.750 to 1.102 9.21±15.0 -4.9 -11.2 to 14 0.129 58 2.9±1.1 4.8 2.8±1.1 0.191 -0.750 to 1.102 9.21±15.0 -4.9 -11.2 to 14 0.129 58 2.9±1.1 4.8 2.8±1.1 0.191 -0.266 to 0.84 9.21±15.0 -4.9 -1.12 to 14 0.129	Yes	16	89.9±12.9	25	88.7±15.5	1.2	-8.2 to 10.6	0.796	30	3.0±1.1	28	2.6±1.1	0.696	-0.250 to 1.642	0.149
004±138 1.8 -59 to 9.4 0.648 37 3.2±11 68 2.6±1.1 1.093 0.324 to 1.861 0 94.9±17.3 -4.9 -114.4 to 4.6 0.301 52 2.9±1.0 11 3.1±0.9 0.324 to 1.861 9 94.9±17.3 -4.9 -114.4 to 4.6 0.301 52 2.9±1.0 11 0.161 -0.268 to 1.305 9 94.1±146 -3.4 -10.3 to 3.6 0.339 66 3.1±1.1 31 2.9±1.1 0.161 -0.268 to 1.305 9 88.9±14.0 1.5 -0.1 to 15.2 0.58 2.2±1.1 48 2.6±1.1 0.161 to 2.055 92.6±14.5 -4.9 -11.2 to 1.4 0.129 58 2.9±1.1 48 2.8±1.1 0.161 to 2.055 92.6±14.5 -4.1 -10.8 to 2.34 52 2.9±1.1 48 2.8±1.1 0.351 to 1.026 92.6±14.5 -4.1 -10.8 to 2.34 52 2.8±1.1 48 2.8±1.1 0.351 to 1.026 92.6±14.5 -	No	38	90.9±12.5	40	92.6±13.6	-1.6	-7.5 to 4.3	0.584	59	3.1±1.1	51	2.8±1.1	0.532	-0.154 to 1.218	0.129
904±138 1.8 -5.9 to 9.4 0.64 37 3.2±1.1 66 2.6±1.1 1.093 0.324 to 1.861 94.9±17.3 -4.9 -14.4 to 4.6 0.301 52 2.9±1.0 11 3.1±0.9 -0.26 -1.454 to 0.034 94.9±17.3 -4.9 -10.3 to 3.6 0.339 66 3.1±1.1 31 2.9±1.1 0.518 -0.266 to 1.305 94.9±1416 1.5 -6.2 to 9.1 0.698 22 2.7±1.0 48 2.6±1.1 0.191 -0.720 to 1.102 98.9±141 1.5 -0.11 to 15.2 0.64 31 3.2±1.0 48 2.6±1.1 0.191 -0.720 to 1.102 92.1±15.0 -4.9 -11.12 to 1.4 0.129 52 2.9±1.1 48 2.8±1.1 0.161 to 2.056 92.6±145 -4.1 -10.8 to 2.34 52 2.9±1.1 48 2.8±1.1 0.331 to 2.051 92.6±145 -4.1 -10.8 to 2.34 52 2.9±1.1 47 2.8±1.1 0.151 to 0.266 0.366 to 0.364	Delivery														
0 04.9±17.3 -4.9 -14.4 to 4.6 0.301 52 2.9±1.0 11 3.1±0.0 -0.26 -1.454 to 0.304 9<4.1±1416	Caesarean		92.1±13.8	55	90.4±13.8	1.8	-5.9 to 9.4	0.648	37	3.2±1.1	68	2.6±1.1	1.093	0.324 to 1.861	0.005
94.1±14.6 -3.4 -10.3 to 3.6 6.6 3.1±1.1 31 2.9±1.1 0.518 -0.268 to 1.305 88.9±14.0 1.5 -6.2 to 9.1 0.698 22 2.7±1.0 48 2.6±1.1 0.518 -0.268 to 1.305 88.9±14.0 1.5 -6.2 to 9.1 0.698 22 2.7±1.0 48 2.6±1.1 0.191 -0.720 to 1.102 92.1±15.0 4.9 -11.2 to 1.4 0.129 58 2.9±1.1 48 2.8±1.1 0.331 -0.363 to 1.025 92.1±15.0 4.9 -11.2 to 1.4 0.129 58 2.9±1.1 48 2.8±1.1 0.331 -0.365 to 0.884 92.6±14.1 4.5 -2.8 to 11.8 0.721 3.3±0.9 35 2.6±1.1 1.219 0.333 to 2.104 10.03±15.5 -4.1 -10.8 to 2.3 3.3±0.9 35 2.6±1.1 0.161 to 0.368 -0.070 to 3.842 10.03±15.5 -1 -1 3.6±1.1 9 2.4±1.5 1.866 -0.070 to 3.842 10.03±15.5 <	Vaginal	37	89.9±12.0	10	94.9±17.3	-4.9	-14.4 to 4.6	0.301	52	2.9±1.0	7	3.1±0.9	-0.26	-1.454 to 0.934	0.669
94.1±14.6 -3.4 -10.3 to 3.6 0.339 66 3.1±1.1 31 2.9±1.1 0.518 -0.268 to 1.305 88.9±14.0 1.5 -6.2 to 9.1 0.698 22 2.7±1.0 48 2.6±1.1 0.191 -0.720 to 1.102 88.9±14.10 1.5 -6.2 to 9.1 0.698 22 2.7±1.0 48 2.6±1.1 0.191 -0.720 to 1.102 92.1±15.0 -4.9 -11.2 to 1.4 0.129 58 2.9±1.1 48 2.8±1.1 0.331 -0.365 to 0.864 92.1±15.0 -4.9 -11.2 to 1.4 0.129 58 2.9±1.1 48 2.8±1.1 0.331 to 2.055 92.1±15.0 -4.9 -11.2 to 1.4 0.129 58 2.9±1.1 48 2.8±1.1 0.331 to 2.055 92.6±14.1 4.5 -2.8 to 11.8 0.218 0.28 to 1.058 0.356 to 0.884 98.9±14.1 4.5 2.8±1.1 4.4 2.8±1.1 0.331 to 2.056 0.666 to 0.884 100.3±15.5 -0.4 -5.4±0.1.8 0.2841.1<	Apgar score a	at 5 min													
B8.9±1410 1.5 -6.2 to 9.1 0.683 22 7±10 0.191 -0.720 to 1.102 B8.2±133 7.5 -0.1 to 15.2 0.054 31 3.2±1.0 31 2.7±1.1 1.108 0.161 to 2.055 92.1±15.0 -4.9 -11.2 to 1.4 0.129 58 2.9±1.1 48 2.8±1.1 0.331 to 2.055 92.1±15.0 -4.9 -11.2 to 1.4 0.129 58 2.9±1.1 48 2.8±1.1 0.333 to 2.104 92.6±14.5 -4.1 -10.8 to 2.7 0.234 52 2.9±1.1 48 2.8±1.1 0.333 to 2.104 10.334.2 -4.1 -10.8 to 2.7 0.234 52 2.9±1.1 12.10 0.333 to 2.104 10.0.3±15.5 -4.1 -10.8 to 2.7 0.234 5 2.6±1.1 12.19 0.333 to 2.104 10.0.3±15.5 -1 -4.2 1.1 0.12 12.10 0.376 0.070 to 3.842 10.0.3±15.5 -1 -1 1 3.6±1.1 0 2.4±1.5 0.4	≥8	36	90.7±13.0	27	94.1±14.6	-3.4	-10.3 to 3.6	0.339	66	3.1±1.1	31	2.9±1.1	0.518	-0.268 to 1.305	0.197
89.2±13.3 7.5 -0.1 to 15.2 0.054 31 3.2±1.0 31 1.108 0.161 to 2.055 92.1±15.0 -4.9 -11.2 to 1.4 0.129 58 2.9±1.1 48 2.8±1.1 0.331 -0.363 to 1.025 92.1±15.0 -4.9 -11.2 to 1.4 0.129 58 2.9±1.1 48 2.8±1.1 0.331 -0.366 to 0.884 92.6±14.1 4.5 -10.8 to 2.7 0.234 52 2.9±1.1 48 2.8±1.1 0.159 -0.566 to 0.884 88.9±14.1 4.5 -2.8 to 11.8 0.234 52 2.9±1.1 44 2.8±1.1 0.159 -0.566 to 0.884 90.6±14.3 -0.4 -2.8 to 11.8 0.218 3.3±0.1 0.75 2.6±1.1 1.219 0.333 to 2.104 90.6±14.3 -0.4 -5.4 to 4.5 0.862 75 2.9±1.1 9 2.4±1.5 0.070 to 3.842 100.3±15.5 - - - 14 3.6±1.1 9 2.4±1.5 1.886 -0.070 to 3.842	8	18	90.4±11.8	38	88.9±14.0	1.5	-6.2 to 9.1	0.698	22	2.7±1.0	48	2.6±1.1	0.191	-0.720 to 1.102	0.681
89.2±13.3 7.5 -0.1 to 15.2 0.054 31 3.2±1.0 31 2.7±1.1 1.108 0.161 to 2.055 92.1±15.0 -4.9 -11.2 to 1.4 0.129 58 2.9±1.1 48 2.8±1.1 0.331 -0.363 to 1.025 92.1±15.0 -4.1 -10.8 to 2.7 0.234 52 2.9±1.1 44 2.8±1.1 0.159 -0.566 to 0.884 92.6 ±14.5 -4.1 -10.8 to 2.7 0.234 52 2.9±1.1 1.219 0.333 to 2.104 88.9 ±14.1 4.5 -2.8 to 11.8 0.12 33 3.3±0.9 35 2.6±1.1 1.219 0.333 to 2.104 0 90.6 ±14.3 -0.4 -5.8 to 11.8 0.218 3.3±0.9 35 2.4±1.1 0.159 -0.566 to 0.984 0 100.3 ±15.5 - - 14 3.6±1.1 9 2.4±1.5 1.866 -0.761 to 3.842 0 100.3 ±15.5 - - 14 3.6±1.1 9 2.4±1.1.6 0.070 to 3.842	Antenatal stei	roid use													
92.1±15.0 -4.9 -11.2 to 1.4 0.129 58 2.9±1.1 48 2.8±1.1 0.331 -0.363 to 1.025 92.6±14.5 -4.1 -10.8 to 2.7 0.234 52 2.9±1.1 44 2.8±1.1 0.159 -0.566 to 0.884 88.9±14.1 4.5 -2.8 to 11.8 0.218 37 3.3±0.9 35 2.6±1.1 1.219 0.333 to 2.104 90.6±14.3 0.4 -5.4 to 4.5 0.862 75 2.9±1.0 70 2.7±1.0 0.376 -0.216 to 0.968 90.6±14.3 -0.4 -5.4 to 4.5 0.862 75 2.9±1.0 70 2.7±1.0 0.376 -0.216 to 0.968 90.6±14.3 -0.4 -5.4 to 4.5 0.862 75 2.9±1.1 9 2.4±1.5 1.886 -0.070 to 3.842 100.03±15.5 - - - 14 3.6±1.1 9 2.4±1.5 1.687 2.4±1.1 0.167 to 3.842 95.3±13.5 -3.3 -9.5 to 2.9 14 14 2.6±1.1 0.267 -0.483 to 1.017 85.5±13.8 3.5 -4.2 to 11.2 0.369	Yes	19	96.8±11.0	24	89.2±13.3	7.5	-0.1 to 15.2	0.054	31	3.2±1.0	31	2.7±1.1	1.108	0.161 to 2.055	0.022
92.6±14.5 -4.1 -10.8 to 2.7 0.234 52 2.9±1.1 44 2.8±1.1 0.159 -0.566 to 0.884 88.9±14.1 4.5 -2.8 to 11.8 0.218 37 3.3±0.9 35 2.6±1.1 1.219 0.333 to 2.104 90.6±14.3 -0.4 -5.4 to 4.5 0.862 75 2.9±1.0 70 2.7±1.0 0.376 -0.216 to 0.968 100.3±15.5 -0.4 -5.4 to 4.5 0.862 75 2.9±1.0 70 2.7±1.0 0.376 -0.216 to 0.968 100.3±15.5 -1 -5 -1 1 3.6±1.1 9 2.4±1.5 1.886 -0.070 to 3.842 95.5±13.6 -3.3 -9.5 to 2.9 0.287 49 3.0±1.1 0.296 0.154 to 1.837 95.5±13.8 3.5 -4.2 to 11.2 0.369 40 2.9±1.1 3.5 -0.483 to 1.017 85.5±13.8 3.5 -4.2 to 11.2 0.369 2.9±1.1 3.5 -4.41.5 0.9566 0.154 to 1.837	No	35	87.3±12.1	41	92.1±15.0	-4.9	-11.2 to 1.4	0.129	58	2.9±1.1	48	2.8±1.1	0.331	-0.363 to 1.025	0.350
92.6±14.5 -4.1 -10.8 to 2.7 0.234 52 2.9±1.1 44 2.8±1.1 0.159 -0.566 to 0.884 88.9±14.1 4.5 -2.8 to 11.8 0.218 37 3.3±0.9 35 2.6±1.1 1.219 0.333 to 2.104 98.9±14.1 4.5 -5.8 to 11.8 0.218 37 3.3±0.9 35 2.6±1.1 1.219 0.333 to 2.104 90.6±14.3 -0.4 -5.4 to 4.5 0.862 75 2.9±1.0 70 2.7±1.0 0.376 -0.216 to 0.968 90.6±14.3 -0.4 -5.4 to 4.5 0.862 75 2.9±1.0 9 2.4±1.5 1.886 -0.070 to 3.842 91.00.3±15.5 - - - 14 3.6±1.1 9 2.4±1.5 1.886 -0.070 to 3.842 95.3±13.5 -3.3 -9.5 to 2.9 0.287 49 3.1±1.0 0.267 -0.483 to 1.017 95.5±13.8 3.5 -4.2 to 11.2 0.369 40 2.9±1.1 35 2.4±1.1 0.996 0.154 to	Sex														
88.9±14.1 4.5 -2.8 to 11.8 0.218 37 3.3±0.9 35 2.6±1.1 1.219 0.333 to 2.104 90.6±14.3 0.4 -5.4 to 4.5 0.862 75 2.9±1.0 70 2.7±1.0 0.376 -0.216 to 0.968 100.3±15.5 - - - 14 3.6±1.1 9 2.4±1.5 1.886 -0.070 to 3.842 100.3±15.5 - - - 14 3.6±1.1 9 2.4±1.5 1.886 -0.070 to 3.842 100.3±15.5 - - - 14 3.6±1.1 9 2.4±1.5 1.886 -0.070 to 3.842 100.3±15.5 - - - 14 3.6±1.1 9 2.4±1.5 1.886 -0.070 to 3.842 105.5±13.8 3.5 -3.3 -9.5 to 2.9 0.287 49 2.9±1.1 35 2.4±1.5 0.996 0.154 to 1.837 10 terms of the DC18 3.5 -4.2 to 11.2 0.369 40 2.9±1.1 35 2.4±1.1 0.996 <td>Male</td> <td>31</td> <td>88.6±13.3</td> <td>38</td> <td>92.6±14.5</td> <td>-4.1</td> <td>-10.8 to 2.7</td> <td>0.234</td> <td>52</td> <td>2.9±1.1</td> <td>44</td> <td>2.8±1.1</td> <td>0.159</td> <td>-0.566 to 0.884</td> <td>0.667</td>	Male	31	88.6±13.3	38	92.6±14.5	-4.1	-10.8 to 2.7	0.234	52	2.9±1.1	44	2.8±1.1	0.159	-0.566 to 0.884	0.667
90.6±14.3 -0.4 -5.4 to 4.5 0.862 75 2.9±1.0 70 2.7±1.0 0.376 -0.216 to 0.968 100.3±15.5 - - - 14 3.6±1.1 9 2.4±1.5 1.886 -0.070 to 3.842 95.3±13.5 - - - 14 3.6±1.1 9 2.4±1.5 1.886 -0.070 to 3.842 85.5±13.8 -3.3 -9.5 to 2.9 0.287 49 3.1±1.0 44 3.0±1.1 0.267 -0.483 to 1.017 85.5±13.8 3.5 -4.2 to 11.2 0.369 40 2.9±1.1 35 2.4±1.1 0.996 0.154 to 1.837 in terms of the DQ18 scores, which were either computed or inferred (if developmental testing was unfeasible or unnecessary).	Female	23	93.4±11.0	27	88.9±14.1	4.5	-2.8 to 11.8	0.218	37	3.3±0.9	35	2.6±1.1	1.219	0.333 to 2.104	0.007
90.6 ± 14.3 -0.4 -5.4 to 4.5 0.862 75 2.9 ± 1.0 70 2.7 ± 1.0 0.376 -0.216 to 0.968 100.3 ± 15.5 $ -$	Total parenter	ral nutriti	on												
100.3±15.5 - - 14 3.6±1.1 9 2.4±1.5 1.886 -0.070 to 3.842 95.3±13.5 -3.3 -9.5 to 2.9 0.287 49 3.1±1.0 44 3.0±1.1 0.267 -0.483 to 1.017 85.5±13.8 3.5 -4.2 to 11.2 0.369 40 2.9±1.1 35 2.4±1.1 0.996 0.154 to 1.837 in terms of the DQ18 scores, which were either computed or inferred (if developmental testing was unfeasible or unnecessary).	Yes	53	90.2±12.2	62	90.6±14.3	-0.4	-5.4 to 4.5	0.862	75	2.9±1.0	70	2.7±1.0	0.376	-0.216 to 0.968	0.213
95.3±13.5 -3.3 -9.5 to 2.9 0.287 49 3.1±1.0 44 3.0±1.1 0.267 -0.483 to 1.017 85.5±13.8 3.5 -4.2 to 11.2 0.369 40 2.9±1.1 35 2.4±1.1 0.996 0.154 to 1.837 in terms of the DQ18 scores, which were either computed or inferred (if developmental testing was unfeasible or unnecessary).	No		114	ო	100.3±15.5	I	I	I	14	3.6±1.1	0	2.4±1.5	1.886	-0.070 to 3.842	0.059
3.3 -9.5 to 2.9 0.287 49 3.1±1.0 44 3.0±1.1 0.267 -0.483 to 1.017 3.5 -4.2 to 11.2 0.369 40 2.9±1.1 35 2.4±1.1 0.996 0.154 to 1.837 scores, which were either computed or inferred (if developmental testing was unfeasible or unnecessary).	Age at entera	l feeding	I of 100mL/kg/	/day											
3.5 -4.2 to 11.2 0.369 40 2.9 ± 1.1 35 2.4 ± 1.1 0.996 0.154 to 1.837 scores, which were either computed or inferred (if developmental testing was unfeasible or unnecessary).	<13days	30	92.0±11.5		95.3±13.5	-3.3	-9.5 to 2.9	0.287	49	3.1±1.0	44	3.0±1.1	0.267	-0.483 to 1.017	0.485
*Developmental levels were determined in terms of the DQ18 scores, which were either computed or inferred (if developmental testing was unfeasible or unnecessary). †Student's t-test. ‡Ordered logistic regression analysis.	≥13days	24	88.9±13.7	28	85.5±13.8	3.5	-4.2 to 11.2	0.369	40	2.9±1.1	35	2.4±1.1	0.996	0.154 to 1.837	0.020
	*Developmen †Student's t-t ‡Ordered logi	ital levels test. istic regn	s were determi ession analysis	ned in [.] s.	terms of the DQ1	8 scores, whic	:h were either c	omputed or	r inferred	l (if developmen	tal testir	ng was unfeas	sible or unneces	ssary).	

6

to restraint stress was substantially higher in germ-free mice than in specific pathogen-free mice. However, the exaggerated hypothalamic-pituitary-adrenal stress response of germ-free mice was reversed by reconstitution with *Bifidobacterium infantis.*¹⁸ Taken together, these findings clearly demonstrate that intestinal microbiota can act on the nervous system.

The present study is a follow-up investigation of a large cluster-randomised clinical trial, a post hoc safety type of study. A limitation of the study is that the sample size was not predecided via a power analysis specifically meant to facilitate detecting differences in neurodevelopmental outcomes between the groups. The primary outcome of the randomised controlled trial was the establishment of enteral feeding among VLBW infants. Another limitation is that we could only evaluate infants who were followed-up at the participating hospitals, although background characteristics were not different between infants evaluated and not evaluated.

Despite these limitations, the present report is the first to describe a clinical trial demonstrating that probiotics affect psychological development in the long term, suggesting that probiotics might be a candidate for neuroprotection, as predicted by Keunen *et al.*¹⁹

Acknowledgements The authors would like to thank all the families who participated in this trial, as well as all the staff in collaborating hospitals.

Collaborators Staff in Recruiting Hospitals Iwate Medical University, Morioka: Takeo Kasai; Japanese Red Cross Akita Hospital, Akita: Hirokazu Arai; Fukushima Medical University, Fukushima: Maki Sato; Fukushima National Hospital, Kohriyama: Niro Ujiie, Tsutomu Kawahara, Tsutomu Isii; Ibaraki Children's Hospital, Mito: Junichi Arai; Shinshi University, Mashumoto: Atsushi Baba; Niigata Prefectural Central Hospital, Takada: Kinuko Kojima: Nagaoka Red Cross Hospital, Nagova: Junya Onozuka; Takaoka Hospital, Toyama: Hiroaki Imamura; Gifu Prefecture General Medical Hospital, Gifu: Yoshinori Kono; Shizuoka Saiseikai General Hospital, Shizuoka: Takahiro Sugiura; Nagoya City West Medical Center, Nagoya: Sumio Fukuda; Shiga University of Medical Science, Otsu: Takahide Yanagi, Sayuri Nakahara; Uji-Tokusyukai Medical Center, Uji: Shinichiro Tanaka, Hitoshi Awakuni; Shimane Prefectural Central Hospital, Shimane: Fumihide Kato; Kurashiki Central Hospital, Kurashiki: Shinichi Watabe, Akihito Takahashi; Tsuyama Cyuo Hospital, Tsuyama: Moriharu Sugimoto; Kawasaki Medical School, Okayama: Yutaka Kawamoto; National Hospital Organization Nagasaki Medical Center, Omura: Mikihiro Aoki

Contributors ST, the corresponding author, had a major role in study design, data analysis, drafted the initial manuscript and takes final responsibility for the decision to submit for publication. MT was involved in running the trial, reviewed the manuscript and approved the final manuscript as submitted. SK also had a major role in study design, data collection, interpretation of results and approved the final manuscript as submitted.

Funding This study was partially funded by the Food Science Institute Foundation, Japan. The interventions for this trial were provided by Meiji Co, Ltd. (Tokyo, Japan).

Competing interests MT is employed by Meiji Co., Ltd.

Patient consent Parental/guardian consent obtained.

Ethics approval The study protocol and follow-up analysis were approved by the Ethics Committee of the Tokyo Women's Medical University (registration number 1675).

Provenance and peer review Not commissioned; externally peer reviewed.

Data sharing statement All the data in the study are available to researchers via a data request to the corresponding author.

Open Access This is an Open Access article distributed in accordance with the Creative Commons Attribution Non Commercial (CC BY-NC 4.0) license, which permits others to distribute, remix, adapt, build upon this work non-commercially, and license their derivative works on different terms, provided the original work is properly cited and the use is non-commercial. See: http://creativecommons.org/ licenses/by-nc/4.0/

 $\hfill {\ensuremath{\mathbb C}}$ Article author(s) (or their employer(s) unless otherwise stated in the text of the article) 2018. All rights reserved. No commercial use is permitted unless otherwise expressly granted.

REFERENCES

- Kitajima H, Sumida Y, Tanaka R, et al. Early administration of Bifidobacterium breve to preterm infants: randomised controlled trial. Arch Dis Child Fetal Neonatal Ed 1997;76:F101–7.
- AlFaleh K, Anabrees J. Probiotics for prevention of necrotizing enterocolitis in preterm infants. *Cochrane Database Syst Rev* 2014:CD005496.
- Rao SC, Athalye-Jape GK, Deshpande GC, et al. Probiotic supplementation and late-onset sepsis in preterm infants: a metaanalysis. *Pediatrics* 2016;137:e20153684–16.
- 4. Costeloe K, Hardy P, Juszczak E, et al. Bifidobacterium breve BBG-001 in very preterm infants: a randomised controlled phase 3 trial. Lancet 2016;387:649–60.
- Yamasaki C, Totsu S, Uchiyama A, et al. Effect of Bifidobacterium administration on very-low-birthweight infants. Pediatr Int 2012;54:651–6.
- Totsu S, Yamasaki C, Terahara M, et al. Bifidobacterium and enteral feeding in preterm infants: cluster-randomized trial. Pediatr Int 2014;56:714–9.
- Ishii N, Kono Y, Yonemoto N, et al. Outcomes of infants born at 22 and 23 weeks' gestation. *Pediatrics* 2013;132:62–71.
- Kono Y, Yonemoto N, Kusuda S, et al. Developmental assessment of VLBW infants at 18 months of age: a comparison study between KSPD and Bayley III. Brain Dev 2016;38:377–85.
- 9. Palisano R, Rosenbaum P, Walter S, *et al.* Development and reliability of a system to classify gross motor function in children with cerebral palsy. *Dev Med Child Neurol* 1997;39:214–23.
- Cormack BE, Bloomfield FH, Dezoete A, et al. Does more protein in the first week of life change outcomes for very low birthweight babies? J Paediatr Child Health 2011;47:898–903.
- 11. Fitzhardinge PM, Steven EM. The small-for-date infant. II. Neurological and intellectual sequelae. *Pediatrics* 1972;50:50–7.
- 12. Lucas A, Morley R, Cole TJ. Randomised trial of early diet in preterm babies and later intelligence quotient. *BMJ* 1998;317:1481–7.
- Pärtty A, Kalliomäki M, Wacklin P, et al. A possible link between early probiotic intervention and the risk of neuropsychiatric disorders later in childhood: a randomized trial. *Pediatr Res* 2015;77:823–8.
- Finegold SM, Downes J, Summanen PH. Microbiology of regressive autism. *Anaerobe* 2012;18:260–2.
- Wang L, Christophersen CT, Sorich MJ, et al. Low relative abundances of the mucolytic bacterium Akkermansia muciniphila and Bifidobacterium spp. in feces of children with autism. Appl Environ Microbiol 2011;77:6718–21.
- Adams JB, Johansen LJ, Powell LD, et al. Gastrointestinal flora and gastrointestinal status in children with autism--comparisons to typical children and correlation with autism severity. BMC Gastroenterol 2011;11:22.
- Hsiao EY, McBride SW, Hsien S, *et al.* Microbiota modulate behavioral and physiological abnormalities associated with neurodevelopmental disorders. *Cell* 2013;155:1451–63.
- Sudo N, Chida Y, Aiba Y, et al. Postnatal microbial colonization programs the hypothalamic-pituitary-adrenal system for stress response in mice. J Physiol 2004;558:263–75.
- Keunen K, van Elburg RM, van Bel F, et al. Impact of nutrition on brain development and its neuroprotective implications following preterm birth. *Pediatr Res* 2015;77:148–55.