Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Malformation syndromes associated with disorders of sex development

Key Points

  • Nongenital malformation syndromes in patients with disorders of sex development (DSDs) can be classified into two subtypes

  • In the first subtype, patients have abnormalities of hormonal function; in the second subtype, they have normal sex hormones but have a primary morphological defect of genital development

  • So-called nonhormonal morphological syndromes can be recognised by the presence of abnormal anatomy beyond a narrow range of external genital structures on a spectrum between normal male anatomy through to normal female anatomy

  • The genetic causes of many hormonal DSDs with malformation syndromes are now often known

  • Many nonhormonal DSDs with morphological changes do not have known genetic causes, but expected advances in the field are likely to change this situation in the future

Abstract

When embryological development of the internal and/or external genitalia is disrupted, the patient presents with a disorder of sex development (DSD) in the neonatal period or sometime later in life. Some of these patients have other, nongenital malformations, which makes their overall management more complex than if they just had a DSD. This Review summarises these malformation syndromes and discusses the recent research into their aetiology. The genetic causes of these malformation syndromes, when they are known, will also be described. Many specific genetic mutations are now known in malformation syndromes with a defect in hormonal function. By contrast, the genetic causes remain unknown in many nonhormonal morphological anomalies that affect the genitalia.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Sex determination and sexual differentiation of the internal genital ducts is under the control of testosterone and AMH, as well as estrogen in the later gestation of female fetuses.
Figure 2: Sexual differentiation of the external genitalia, which is regulated by androgens via conversion of testosterone to dihydrotestosterone by aromatase in the peripheral tissues.
Figure 3: Features of Denys–Drash syndrome.
Figure 4: The three clinical presentations of persistent Müllerian duct syndrome.

Similar content being viewed by others

References

  1. Hutson, J. M., Warne, G. L. & Grover, S. R. Disorders of Sex Development: An Integrated Approach to Management (Springer, 2012).

    Book  Google Scholar 

  2. Low, Y., Deshpande, A. V. & Hutson J. M. Lethal comorbidity with genital anomaly in the infant. J. Pediatr. Urol. 2, 534–538 (2006).

    Article  CAS  PubMed  Google Scholar 

  3. Low, Y. & Hutson, J. M. Rules for clinical diagnosis in babies with ambiguous genitalia. J. Paediatr. Child Health 39, 406–413 (2003).

    Article  CAS  PubMed  Google Scholar 

  4. Wilhelm, D., Yang, J. X. & Thomas, P. Mammalian sex determination and gonad development. Curr. Top. Dev. Biol. 106, 89–121 (2013).

    Article  CAS  PubMed  Google Scholar 

  5. Pearlman, A. et al. Mutations in MAP3K1 cause 46,XY disorders of sex development and implicate a common signal transduction pathway in human testis determination. Am. J. Hum. Genet. 87, 898–904 (2010).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  6. Baxter, R. M. & Vilain, E. Translational genetics for diagnosis of human disorders of sex development. Annu. Rev. Genomics Hum. Genet. 14, 371–392 (2013).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  7. Biason-Lauber, A. et al. Ovaries and female phenotype in a girl with 46,XY karyotype and mutations in the CBX2 gene. Am. J. Hum. Genet. 84, 658–663 (2009).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  8. Lin, L. et al. Heterozygous missense mutations in steroidogenic factor 1 (SF1/Ad4BP, NR5A1) are associated with 46,XY disorders of sex development with normal adrenal function. J. Clin. Endocrinol. Metab. 92, 991–999 (2007).

    Article  PubMed  CAS  Google Scholar 

  9. Kohler, B. & Achermann, J. C. Update—steroidogenic factor 1 (SF-1, NR5A1). Minerva Endocrinol. 35, 73–86 (2010).

    CAS  PubMed  Google Scholar 

  10. Lourenço, D. et al. Loss-of-function mutation in GATA4 causes anomalies of human testicular development. Proc. Natl Acad. Sci. USA 108, 1597–1602 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  11. White, S. et al. Copy number variation in patients with disorders of sex development due to 46,XY gonadal dysgenesis. PLoS ONE 6, e17793 (2011).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  12. Umehara, F. et al. A novel mutation of desert hedgehog in a patient with 46,XY partial gonadal dysgenesis accompanied by minifascicular neuropathy. Am. J. Hum. Genet. 67, 1302–1305 (2000).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  13. Tang, P. et al. Comparative analysis of the ATRX promoter and 5′ regulatory region reveals conserved regulatory elements which are linked to roles in neurodevelopment, α-globin regulation and testicular function. BMC Res. Notes 4, 200 (2011).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  14. Ogata, T., Wada, Y. & Fukami, M. MAMLD1 (CXorf6): a new gene for hypospadias. Sex Dev. 2, 244–250 (2008).

    Article  CAS  PubMed  Google Scholar 

  15. Puffenberger, E. G. et al. Mapping of sudden infant death with dysgenesis of the testes syndrome (SIDDT) by a SNP genome scan and identification of TSPYL loss of function. Proc. Natl Acad. Sci. USA 101, 11689–11694 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Gibbons, R. Alpha thalassaemia-mental retardation, X linked. Orphanet J. Rare Dis. 1, 15 (2006).

    Article  PubMed  PubMed Central  Google Scholar 

  17. Ausio, J. et al. Syndromes of disordered chromatin remodeling. Clin. Genet. 64, 83–95 (2003).

    Article  CAS  PubMed  Google Scholar 

  18. Fischbach, B. V. et al. WAGR syndrome: a clinical review of 54 cases. Pediatrics 116, 984–988 (2005).

    Article  PubMed  Google Scholar 

  19. Breslow, N. E. et al. Renal failure in the Denys–Drash and Wilms' tumor-aniridia syndromes. Cancer Res. 60, 4030–4032 (2000).

    CAS  PubMed  Google Scholar 

  20. Shapiro, O. et al. Mixed gonadal dysgenesis and Denys–Drash syndrome: urologists should screen for nephrotic syndrome. Can. J. Urol. 14, 3767–3769 (2007).

    PubMed  Google Scholar 

  21. Chernin, G. et al. Genotype/phenotype correlation in nephrotic syndrome caused by WT1 mutations. Clin. J. Am. Soc. Nephrol. 5, 1655–1662 (2010).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  22. Gwin, K. et al. Expanding the clinical spectrum of Frasier syndrome. Pediatr. Dev. Pathol. 11, 122–127 (2008).

    Article  PubMed  Google Scholar 

  23. Nso Roca, A. P. et al. Evolutive study of children with diffuse mesangial sclerosis. Pediatr. Nephrol. 24, 1013–1019 (2009).

    Article  PubMed  Google Scholar 

  24. Breslow, N. E. et al. End stage renal disease in patients with Wilms tumor: results from the National Wilms Tumor Study Group and the United States Renal Data System. J. Urol. 174, 1972–1975 (2005).

    Article  PubMed  PubMed Central  Google Scholar 

  25. Auber, F. et al. Management of Wilms tumors in Drash and Frasier syndromes. Pediatr. Blood Cancer 52, 55–59 (2009).

    Article  CAS  PubMed  Google Scholar 

  26. Ariyaratana, S. & Loeb, D. M. The role of the Wilms tumour gene (WT1) in normal and malignant haematopoiesis. Expert Rev. Mol. Med. 9, 1–17 (2007).

    Article  PubMed  Google Scholar 

  27. Slavotinek, A. M. Single gene disorders associated with congenital diaphragmatic hernia. Am. J. Med. Genet. C Semin. Med. Genet. 145C, 172–183 (2007).

    Article  CAS  PubMed  Google Scholar 

  28. Kitsiou-Tzeli, S. et al. Sertoli cell tumor and gonadoblastoma in an untreated 29-year-old 46,XY phenotypic male with Frasier syndrome carrying a WT1 IVS9+4C>T mutation. Hormones (Athens) 11, 361–367 (2012).

    Article  Google Scholar 

  29. Robin, N. H. et al. Opitz syndrome is genetically heterogeneous, with one locus on Xp22, and a second locus on 22q11.2. Nat. Genet. 11, 459–461 (1995).

    Article  CAS  PubMed  Google Scholar 

  30. Migliore, C. et al. Complex rearrangement of the exon 6 genomic region among Opitz G/BBB syndrome MID1 alterations. Eur. J. Med. Genet. 56, 404–410 (2013).

    Article  PubMed  Google Scholar 

  31. Linden, M. G. Bender, B. G. & Robinson, A. Intrauterine diagnosis of sex chromosome aneuploidy. Obstet. Gynecol. 87, 468–475 (1996).

    Article  CAS  PubMed  Google Scholar 

  32. Zhong, Q. & Layman, L. C. Genetic considerations in the patient with Turner syndrome–45, X with or without mosaicism. Fertil. Steril. 98, 775–779 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  33. Sybert, V. P. Adult height in Turner syndrome with and without androgen therapy. J. Pediatr. 104, 365–369 (1984).

    Article  CAS  PubMed  Google Scholar 

  34. Bondy, C. et al. Bicuspid aortic valve and aortic coarctation are linked to deletion of the X chromosome short arm in Turner syndrome. J. Med. Genet. 50, 662–665 (2013).

    Article  PubMed  Google Scholar 

  35. Trolle, C. et al. Long QT interval in Turner syndrome—a high prevalence of LQTS gene mutations. PLoS ONE 8, e69614 (2013).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  36. Cramer, J. W. et al. The spectrum of congenital heart disease and outcomes after surgical repair among children with Turner syndrome: a single-center review. Pediatr. Cardiol. 35, 253–260 (2014).

    Article  PubMed  Google Scholar 

  37. Bergamaschi, R. et al. Hearing loss in Turner syndrome: results of a multicentric study. J. Endocrinol. Invest. 31, 779–783 (2008).

    Article  CAS  PubMed  Google Scholar 

  38. Morimoto, N. et al. Hearing loss in Turner syndrome. J. Pediatr. 149, 697–701 (2006).

    Article  PubMed  Google Scholar 

  39. Mazzocco, M. M. et al. Social functioning among girls with fragile X or Turner syndrome and their sisters. J. Autism Dev. Disord. 28, 509–517 (1998).

    Article  CAS  PubMed  Google Scholar 

  40. Hewitt, J. K. et al. Fertility in Turner syndrome. Clin. Endocrinol. (Oxf.) 79, 606–614 (2013).

    Google Scholar 

  41. Goldacre, M. J. & Seminog, O. O. Turner syndrome and autoimmune diseases: record-linkage study. Arch. Dis. Child. 99, 71–73 (2014).

    Article  PubMed  Google Scholar 

  42. Gonzalez, L. & Witchel, S. F. The patient with Turner syndrome: puberty and medical management concerns. Fertil. Steril. 98, 780–786 (2013).

    Article  Google Scholar 

  43. Capito, C. et al. 46,XY pure gonadal dysgenesis: clinical presentations and management of the tumor risk. J. Pediatr. Urol. 7, 72–75 (2011).

    Article  PubMed  Google Scholar 

  44. Fallat, M. E. & Donahoe, P. K. Intersex genetic anomalies with malignant potential. Curr. Opin. Pediatr. 18, 305–311 (2006).

    Article  PubMed  Google Scholar 

  45. Hersmus, R. et al. New insights into type II germ cell tumor pathogenesis based on studies of patients with various forms of disorders of sex development (DSD). Mol. Cell Endocrinol. 291, 1–10 (2008).

    Article  CAS  PubMed  Google Scholar 

  46. Hersmus, R. et al. FOXL2 and SOX9 as parameters of female and male gonadal differentiation in patients with various forms of disorders of sex development (DSD). J. Pathol. 215, 31–38 (2008).

    Article  CAS  PubMed  Google Scholar 

  47. Michala, L. et al. Swyer syndrome: presentation and outcomes. BJOG 115, 737–741 (2008).

    Article  CAS  PubMed  Google Scholar 

  48. Zielinska, D., Zajaczek, S. & Rzepka-Gorska, I. Tumors of dysgenetic gonads in Swyer syndrome. J. Pediatr. Surg. 42, 1721–1724 (2007).

    Article  PubMed  Google Scholar 

  49. Groth, K. A. et al. Clinical review: Klinefelter syndrome-—a clinical update. J. Clin. Endocrinol. Metab. 98, 20–30 (2013).

    Article  CAS  PubMed  Google Scholar 

  50. Lee, Y. S. et al. Genital anomalies in Klinefelter's syndrome. Horm. Res. 68, 150–155 (2007).

    CAS  PubMed  Google Scholar 

  51. Nahata, L. et al. Klinefelter syndrome: are we missing opportunities for early detection? Clin. Pediatr. (Phila.) 52, 936–941 (2013).

    Article  Google Scholar 

  52. Rives, N. et al. The feasibility of fertility preservation in adolescents with Klinefelter syndrome. Hum. Reprod. 28, 1468–1479 (2013).

    Article  CAS  PubMed  Google Scholar 

  53. Aksglaede, L. & Juul, A. Testicular function and fertility in men with Klinefelter syndrome: a review. Eur. J. Endocrinol. 168, R67–R76 (2013).

    Article  CAS  PubMed  Google Scholar 

  54. Aksglaede, L. et al. 47,XXY Klinefelter syndrome: clinical characteristics and age-specific recommendations for medical management. Am. J. Med. Genet. C Semin. Med. Genet. 163C, 55–63 (2013).

    Article  PubMed  Google Scholar 

  55. Rauen, K. A. The RASopathies. Annu. Rev. Genomics Hum. Genet. 14, 355–369 (2013).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  56. Roberts, A. E. et al. Noonan syndrome. Lancet 381, 333–342 (2013).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  57. Adviento, B. et al. Autism traits in the RASopathies. J. Med. Genet. 51, 10–20 (2014).

    Article  CAS  PubMed  Google Scholar 

  58. Aoki, Y. et al. Gain-of-function mutations in RIT1 cause Noonan syndrome, a RAS/MAPK pathway syndrome. Am. J. Hum. Genet. 93, 173–180 (2013).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  59. Lewkowitz-Shpuntoff, H. M. et al. Olfactory phenotypic spectrum in idiopathic hypogonadotropic hypogonadism: pathophysiological and genetic implications. J. Clin. Endocrinol. Metab. 97, E136–E144 (2012).

    Article  CAS  PubMed  Google Scholar 

  60. Miraoui, H. et al. Mutations in FGF17, IL17RD, DUSP6, SPRY4, and FLRT3 are identified in individuals with congenital hypogonadotropic hypogonadism. Am. J. Hum. Genet. 92, 725–743 (2013).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  61. Pitteloud, N. et al. Loss-of-function mutation in the prokineticin 2 gene causes Kallmann syndrome and normosmic idiopathic hypogonadotropic hypogonadism. Proc. Natl Acad. Sci. USA 104, 17447–17452 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Pingault, V. et al. Loss-of-function mutations in SOX10 cause Kallmann syndrome with deafness. Am. J. Hum. Genet. 92, 707–724 (2013).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  63. Dode, C. & Rondard, P. PROK2/PROKR2 signaling and Kallmann syndrome. Front. Endocrinol. (Lausanne) 4, 19 (2013).

    Article  Google Scholar 

  64. Costa-Barbosa, F. A. et al. Prioritizing genetic testing in patients with Kallmann syndrome using clinical phenotypes. J. Clin. Endocrinol. Metab. 98, E943–E953 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  65. Bergman, J. E. et al. The results of CHD7 analysis in clinically well-characterized patients with Kallmann syndrome. J. Clin. Endocrinol. Metab. 97, E858–E862 (2012).

    Article  CAS  PubMed  Google Scholar 

  66. Corsten-Janssen, N. et al. The cardiac phenotype in patients with a CHD7 mutation. Circ. Cardiovasc. Genet. 6, 248–254 (2013).

    Article  CAS  PubMed  Google Scholar 

  67. White, D. R. et al. Aspiration in children with CHARGE syndrome. Int. J. Pediatr. Otorhinolaryngol. 69, 1205–1209 (2005).

    Article  PubMed  Google Scholar 

  68. Valeri, C., Schteingart, H. F. & Rey, R. A. The prepubertal testis: biomarkers and functions. Curr. Opin. Endocrinol. Diabetes Obes. 20, 224–233 (2013).

    Article  CAS  PubMed  Google Scholar 

  69. Cassidy, S. B. et al. Prader–Willi syndrome. Genet. Med. 14, 10–26 (2012).

    Article  CAS  PubMed  Google Scholar 

  70. Bridges, N. What is the value of growth hormone therapy in Prader Willi syndrome? Arch. Dis. Child. 99, 166–170 (2014).

    Article  PubMed  Google Scholar 

  71. Emerick, J. E. & Vogt, K. S. Endocrine manifestations and management of Prader–Willi syndrome. Int. J. Pediatr. Endocrinol. 2013, 14 (2013).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  72. Horsthemke, B. & Wagstaff, J. Mechanisms of imprinting of the Prader–Willi/Angelman region. Am. J. Med. Genet. A 146A, 2041–2052 (2008).

    Article  CAS  PubMed  Google Scholar 

  73. Miller, J. L. et al. Intracranial abnormalities detected by three-dimensional magnetic resonance imaging in Prader–Willi syndrome. Am. J. Med. Genet. A 143, 476–483 (2007).

    Article  Google Scholar 

  74. Farooqi, I. S. et al. Clinical and molecular genetic spectrum of congenital deficiency of the leptin receptor. N. Engl. J. Med. 356, 237–247 (2007).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  75. Ogura, K. et al. Regional cerebral blood flow and abnormal eating behavior in Prader–Willi syndrome. Brain Dev. 35, 427–434 (2013).

    Article  PubMed  Google Scholar 

  76. Gilboa, T. & Gross-Tsur, V. Epilepsy in Prader–Willi syndrome: experience of a national referral centre. Dev. Med. Child. Neurol. 55, 857–861 (2013).

    Article  PubMed  Google Scholar 

  77. Barbaro, M. et al. Multiplex ligation-dependent probe amplification analysis of the NR0B1(DAX1) locus enables explanation of phenotypic differences in patients with X-linked congenital adrenal hypoplasia. Horm. Res. Paediatr. 77, 100–107 (2012).

    Article  CAS  PubMed  Google Scholar 

  78. Aminzadeh, M. et al. Rarer syndromes characterized by hypogonadotropic hypogonadism. Front. Horm. Res. 39, 154–167 (2010).

    Article  CAS  PubMed  Google Scholar 

  79. Landau, Z. et al. Clinical and genetic heterogeneity of congenital adrenal hypoplasia due to NR0B1 gene mutations. Clin. Endocrinol. (Oxf.) 72, 448–454 (2010).

    Article  CAS  Google Scholar 

  80. Li, N. et al. Seven novel DAX1 mutations with loss of function identified in Chinese patients with congenital adrenal hypoplasia. J. Clin. Endocrinol. Metab. 95, E104–E111 (2010).

    Article  PubMed  Google Scholar 

  81. Bartsch, O. et al. Evidence for a new contiguous gene syndrome, the chromosome 16p13.3 deletion syndrome alias severe Rubinstein–Taybi syndrome. Hum. Genet. 120, 179–186 (2006).

    Article  CAS  PubMed  Google Scholar 

  82. van Belzen, M. et al. Rubinstein–Taybi syndrome (CREBBP, EP300). Eur. J. Hum. Genet. 19, 118–120 (2010).

    Google Scholar 

  83. Schorry, E. K. et al. Genotype–phenotype correlations in Rubinstein–Taybi syndrome. Am. J. Med. Genet. A 146A, 2512–2519 (2008).

    Article  CAS  PubMed  Google Scholar 

  84. Stevens, C. A., Pouncey, J. & Knowles, D. Adults with Rubinstein–Taybi syndrome. Am. J. Med. Genet. A 155A, 1680–1684 (2011).

    Article  PubMed  Google Scholar 

  85. Miller, R. W. & Rubinstein, J. H. Tumors in Rubinstein–Taybi syndrome. Am. J. Med. Genet. 56, 112–115 (1995).

    Article  CAS  PubMed  Google Scholar 

  86. Chang, T. C. et al. Axenfeld–Rieger syndrome: new perspectives. Br. J. Ophthalmol. 96, 318–322 (2011).

    Article  PubMed  Google Scholar 

  87. Tumer, Z. & Bach-Holm, D. Axenfeld–Rieger syndrome and spectrum of PITX2 and FOXC1 mutations. Eur. J. Hum. Genet. 17, 1527–1539 (2009).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  88. Battaglia, A. 1p36 Deletion Syndrome [online], (2013).

    Google Scholar 

  89. Barisic, I. et al. Fraser syndrome: epidemiological study in a European population. Am. J. Med. Genet. A 161A, 1012–1018 (2013).

    Article  PubMed  Google Scholar 

  90. van Haelst, M. M. Scambler, P. J. & Hennekam, R. C. Fraser syndrome: a clinical study of 59 cases and evaluation of diagnostic criteria. Am. J. Med. Genet. A 143A, 3194–3203 (2007).

    Article  PubMed  Google Scholar 

  91. Vogel, M. J. et al. Mutations in GRIP1 cause Fraser syndrome. J. Med. Genet. 49, 303–306 (2012).

    Article  PubMed  Google Scholar 

  92. Porter, F. D. Smith–Lemli–Opitz syndrome: pathogenesis, diagnosis and management. Eur. J. Hum. Genet. 16, 535–541 (2008).

    Article  CAS  PubMed  Google Scholar 

  93. Porter, F. D. & Herman, G. E. Malformation syndromes caused by disorders of cholesterol synthesis. J. Lipid Res. 52, 6–34 (2011).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  94. Herman, G. E. & Kratz, L. Disorders of sterol synthesis: beyond Smith–Lemli–Opitz syndrome. Am. J. Med. Genet. C Semin. Med. Genet. 160C, 301–321 (2012).

    Article  CAS  PubMed  Google Scholar 

  95. Nowaczyk, M. J. & Irons, M. B. Smith–Lemli–Opitz syndrome: phenotype, natural history, and epidemiology. Am. J. Med. Genet. C Semin. Med. Genet. 160C, 250–262 (2012).

    Article  PubMed  Google Scholar 

  96. Chan, Y. M. et al. Effects of dietary cholesterol and simvastatin on cholesterol synthesis in Smith–Lemli–Opitz syndrome. Pediatr. Res. 65, 681–685 (2009).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  97. DeBarber, A. E. et al. Smith–Lemli–Opitz syndrome. Expert Rev. Mol. Med. 13, e24 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  98. Scott, R. R. & Miller, W. L. Genetic and clinical features of p450 oxidoreductase deficiency. Horm. Res. 69, 266–275 (2008).

    Article  CAS  PubMed  Google Scholar 

  99. Kanungo, S. et al. Sterol metabolism disorders and neurodevelopment—an update. Dev. Disabil. Res. Rev. 17, 197–210 (2013).

    Article  PubMed  Google Scholar 

  100. Fluck, C. E. et al. P450 oxidoreductase deficiency—a new form of congenital adrenal hyperplasia. Endocr. Dev. 13, 67–81 (2008).

    Article  CAS  PubMed  Google Scholar 

  101. Hutson, J. M. et al. The regulation of testicular descent and the effects of cryptorchidism. Endocr. Rev. 34, 725–752 (2013).

    Article  CAS  PubMed  Google Scholar 

  102. Mazzeu, J. F. et al. Chromosome abnormalities in two patients with features of autosomal dominant Robinow syndrome. Am. J. Med. Genet. A 143A, 1790–1795 (2007).

    Article  CAS  PubMed  Google Scholar 

  103. Nouraei, S. M. et al. Aarskog syndrome with aortic root dilatation and sub-valvular aortic stenosis: surgical management. Interact. Cardiovasc. Thorac. Surg. 4, 47–48 (2005).

    Article  PubMed  Google Scholar 

  104. Orrico, A. et al. Aarskog–Scott syndrome: clinical update and report of nine novel mutations of the FGD1 gene. Am. J. Med. Genet. A 152A, 313–318 (2010).

    Article  CAS  PubMed  Google Scholar 

  105. Hutson, J. M. Undescended testis: the underlying mechanisms and the effects on germ cells that cause infertility and cancer. J. Pediatr. Surg. 48, 903–908.

  106. Josso, N., Rey, R. & Picard, J. Y. Testicular anti-Mullerian hormone: clinical applications in DSD. Semin. Reprod. Med. 30, 364–373 (2012).

    Article  CAS  PubMed  Google Scholar 

  107. Nishi, M. Y. et al. Analysis of anti-Mullerian hormone (AMH) and its receptor (AMHR2) genes in patients with persistent Mullerian duct syndrome. Arq. Bras. Endocrinol. Metabol. 56, 473–478 (2012).

    Article  PubMed  Google Scholar 

  108. Salehi, P. et al. Persistent Mullerian duct syndrome: 8 new cases in Southern California and a review of the literature. Pediatr. Endocrinol. Rev. 10, 227–233 (2012).

    PubMed  Google Scholar 

  109. Hutson, J. M., Chow, C. W. & Ng, W.-D. Persistent Mullerian duct syndrome with transverse testicular ectopia. Pediatr. Surg. Int. 2, 191–194 (1987).

    Google Scholar 

  110. Colacurci, N. et al. Laparoscopic hysterectomy in a case of male pseudohermaphroditism with persistent Mullerian duct derivatives. Hum. Reprod. 12, 272–274 (1997).

    Article  CAS  PubMed  Google Scholar 

  111. Hutson, J. M. & Baker, M. L. A hypothesis to explain abnormal gonadal descent in persistent Mullerian duct syndrome. Pediatr. Surg. Int. 9, 542–543 (1994).

    Google Scholar 

  112. Josso, N. et al. The persistent Mullerian duct syndrome: a rare cause of cryptorchidism. Eur. J. Pediatr. 152, S76–S78 (1993).

    Article  PubMed  Google Scholar 

  113. Imbeaud, S. et al. Testicular degeneration in three patients with the persistent Mullerian duct syndrome. Eur. J. Pediatr. 154, 187–190 (1995).

    CAS  PubMed  Google Scholar 

  114. Josso, N. et al. Anti-Mullerian hormone: the Jost factor. Recent Prog. Horm. Res. 48, 1–59 (1993).

    CAS  PubMed  Google Scholar 

  115. Tong, S. Y. C., Hutson, J. M. & Watts, L. M. Does testosterone diffuse down the Wolffian duct during sexual differentiation? J. Urol. 155, 2057–2059 (1996).

    Article  CAS  PubMed  Google Scholar 

  116. Hannema, S. E. & Hughes, I. A. Regulation of Wolffian duct development. Horm. Res. 67, 142–151 (2007).

    CAS  PubMed  Google Scholar 

  117. Singh, R. et al. Physical deformities relevant to male infertility. Nat. Rev. Urol. 9, 156–174 (2012).

    Article  CAS  PubMed  Google Scholar 

  118. Yu, J. et al. CFTR mutations in men with congenital bilateral absence of the vas deferens (CBAVD): a systemic review and meta-analysis. Hum. Reprod. 27, 25–35 (2012).

    Article  CAS  PubMed  Google Scholar 

  119. Marcorelles, P. et al. Cystic fibrosis transmembrane conductance regulator protein expression in the male excretory duct system during development. Hum. Pathol. 43, 390–397 (2012).

    Article  CAS  PubMed  Google Scholar 

  120. Bombieri, C. et al. Recommendations for the classification of diseases as CFTR-related disorders. J. Cyst. Fibros. 10 (Suppl. 2), S86–S102 (2011).

    Article  CAS  PubMed  Google Scholar 

  121. Radpour, R. et al. Genetic investigations of CFTR mutations in congenital absence of vas deferens, uterus, and vagina as a cause of infertility. J. Androl. 29, 506–513 (2008).

    Article  CAS  PubMed  Google Scholar 

  122. Claustres, M. Molecular pathology of the CFTR locus in male infertility. Reprod. Biomed. Online 10, 14–41 (2005).

    Article  CAS  PubMed  Google Scholar 

  123. Stephens, F. D., Smith, E. D. & Hutson, J. M. Congenital Anomalies of the Kidney, Urinary ad Genital Tracts. 2nd edn (Martin Dunitz, 2002).

    Google Scholar 

  124. Pizzo, A. et al. Mayer–Rokitansky–Kuster–Hauser syndrome: embryology, genetics and clinical and surgical treatment. ISRN Obstet. Gynecol. 2013, 628717 (2013).

    PubMed  PubMed Central  Google Scholar 

  125. Guerrier, D. et al. The Mayer–Rokitansky–Kuster–Hauser syndrome (congenital absence of uterus and vagina)—phenotypic manifestations and genetic approaches. J. Negat. Results Biomed. 5, 1 (2006).

    Article  PubMed  PubMed Central  Google Scholar 

  126. Ekici, A. B. et al. HOXA10 and HOXA13 sequence variations in human female genital malformations including congenital absence of the uterus and vagina. Gene 518, 267–272 (2013).

    Article  CAS  PubMed  Google Scholar 

  127. Wottgen, M. et al. Higher incidence of linked malformations in siblings of Mayer–Rokitansky–Kuster–Hauser-syndrome patients. Hum. Reprod. 23, 1226–1231 (2008).

    Article  CAS  PubMed  Google Scholar 

  128. Oppelt, P. G. et al. Malformations in a cohort of 284 women with Mayer–Rokitansky–Kuster–Hauser syndrome (MRKH). Reprod. Biol. Endocrinol. 10, 57 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  129. Kimberley, N. et al. Vaginal agenesis, the hymen, and associated anomalies. J. Pediatr. Adolesc. Gynecol. 25, 54–58 (2012).

    Article  CAS  PubMed  Google Scholar 

  130. Aveiro, A. C. et al. Herlyn–Werner–Wunderlich syndrome: a rare cause of pelvic pain in adolescent girls. BMJ Case Rep. 2011, bcr0420114147 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  131. Fedele, L. et al. Double uterus with obstructed hemivagina and ipsilateral renal agenesis: pelvic anatomic variants in 87 cases. Hum. Reprod. 28, 1580–1583 (2013).

    Article  CAS  PubMed  Google Scholar 

  132. Tong, J., Zhu, L. & Lang, J. Clinical characteristics of 70 patients with Herlyn–Werner–Wunderlich syndrome. Int. J. Gynaecol. Obstet. 121, 173–175 (2013).

    Article  PubMed  Google Scholar 

  133. Hassett, S. Smith, G. H. & Holland, A. J. Prune belly syndrome. Pediatr. Surg. Int. 28, 219–228 (2012).

    Article  CAS  PubMed  Google Scholar 

  134. Zugor, V., Schott, G. E. & Labanaris, A. P. The Prune belly syndrome: urological aspects and long-term outcomes of a rare disease. Pediatr. Rep. 4, e20 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  135. Hutson, J. M. & Beasley, S. W. Aetiology of the prune belly syndrome. Aust. Paediatr. J. 23, 309–310 (1987).

    CAS  PubMed  Google Scholar 

  136. McMullin, N. D. & Hutson, J. M. Female pseudohermaphroditism in children with cloacal anomalies. Pediatr. Surg. Int. 6, 56–59 (1991).

    Article  Google Scholar 

  137. Stec, A. A., Baradaran, N. & Gearhart, J. P. Congenital renal anomalies in patients with classic bladder exstrophy. Urology 79, 207–209 (2012).

    Article  PubMed  Google Scholar 

  138. Wilkins, S. et al. Insertion/deletion polymorphisms in the DeltaNp63 promoter are a risk factor for bladder exstrophy epispadias complex. PLoS Genet. 8, e1003070 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  139. Mahfuz, I. et al. New insights into the pathogenesis of bladder exstrophy–epispadias complex. J. Pediatr. Urol. 9, 996–1005 (2013).

    Article  PubMed  Google Scholar 

  140. Srinivasan, J., McDougall, P. & Hutson, J. M. When is 'intersex' not intersex? A case of penile agenesis demonstrates how to distinguish non-endocrine disorders in neonates with genital anomaly. J. Paediatr. Child. Health 39, 629–631 (2003).

    Article  CAS  PubMed  Google Scholar 

  141. Rattan, K. N. et al. Aphallia: experience with 3 cases. J. Pediatr. Surg. 45, E13–E16 (2010).

    Article  PubMed  Google Scholar 

  142. Bartsch, O. et al. Evidence for a critical region for penoscrotal inversion, hypospadias, and imperforate anus within chromosomal region 13q32.2q34. Am. J. Med. Genet. 65, 218–221 (1996).

    Article  CAS  PubMed  Google Scholar 

  143. Quelin, C. et al. Twelve new patients with 13q deletion syndrome: genotype–phenotype analyses in progress. Eur. J. Med. Genet. 52, 41–46 (2009).

    Article  PubMed  Google Scholar 

  144. Andresen, J. H. et al. 13q33.2 deletion: a rare cause of ambiguous genitalia in a male newborn with growth restriction. Acta Paediatr. 99, 784–786 (2010).

    Article  CAS  PubMed  Google Scholar 

  145. Brown, S. et al. Preliminary definition of a “critical region” of chromosome 13 in q32: report of 14 cases with 13q deletions and review of the literature. Am. J. Med. Genet. 45, 52–59 (1993).

    Article  CAS  PubMed  Google Scholar 

  146. Hutson, J. M. & Beasley, S. W. Why testicular descent may be impaired in cloacal exstrophy. Pediatr. Surg. Int. 4, 122–123 (1989).

    Article  Google Scholar 

  147. Martucciello, G. in Anorectal Malformations in Children (eds Holschneider, A. M. & Hutson, J. M) 17–30 (Springer, 2006).

    Google Scholar 

  148. Stanton, M. P., Penington, E. C. & Hutson, J. M. A surviving infant with sirenomelia (Mermaid syndrome) associated with absent bladder. J. Pediatr. Surg. 38, 1266–1268 (2003).

    Article  PubMed  Google Scholar 

  149. Orioli, I. M. et al. Sirenomelia: an epidemiologic study in a large dataset from the International Clearinghouse of Birth Defects Surveillance and Research, and literature review. Am. J. Med. Genet. C Semin. Med. Genet. 157C, 358–373 (2011).

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

J.M.H. and S.D.P. contributed to all aspects of the manuscript. S.R.G. and M.O'C. contributed to discussion of the content, wrote the article and reviewed/edited the manuscript before submission.

Corresponding author

Correspondence to John M. Hutson.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

PowerPoint slides

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hutson, J., Grover, S., O'Connell, M. et al. Malformation syndromes associated with disorders of sex development. Nat Rev Endocrinol 10, 476–487 (2014). https://doi.org/10.1038/nrendo.2014.83

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrendo.2014.83

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing