Discussion
This retrospective study aimed to gauge the extent to which the severity of BPD and the time of its diagnosis may be used to optimise the prediction of neurological development at the corrected age of 2 years in preterm infants <30 weeks of gestation. The main findings show that, among all forms of BPD, severe BPD provides the best prediction of NDI and that the assessment of BPD at 40 weeks’ PMA seems to better predict NDI than at 36 weeks’ PMA. These two main observations are suggestive to confirm our hypothesis, and although they do not definitively prove it, they raise the question whether the time point for the 2000-NICHD3 severity-based assessment of BPD at 36 weeks’ PMA might be redefined to improve prognosis.
Few studies, including the present one, have adopted the severity-based 2000-NICHD consensus definition of BPD3 to predict neurodevelopmental outcome. As recently reported, a diverse range of definitions of BPD can be found in the literature.24 A binary definition of BPD appears less informative for the prognosis of neurodevelopmental outcome than a severity-based definition. The current severity-based definition of BPD was first introduced as a practical tool to predict the severity of lung damage, and 36 weeks’ PMA was identified as the best time point to assess severity for the purpose of predicting respiratory outcome.25 However, it remains unclear what roles the severity of BPD and the timing of the diagnosis play in the prediction of neurological development.
The present findings are in agreement with recent literature26 demonstrating that oxygen supplementation and respiratory support at 40 weeks’ PMA are a better predictor of neurosensory morbidity at 18–24 months. A severity-based assessment of BPD of preterm infants at 40 weeks’ PMA should be feasible in an outpatient setting, as preterm infants have often already been discharged from hospital by then.
The BPD incidence observed in our cohort seems to be slightly higher than that reported in the literature concerning infants born <30 weeks of gestation.24 27 This might be explained by a bias in the selection of the study subjects; in addition, clinicians’ subjective judgements might have influenced the classification of BPD, especially its mild and moderate forms.2 28 The increase of about one-third in the number of infants with mild BPD between 36 and 40 weeks’ PMA corroborates this latter interpretation. A more objective approach to BPD classification might have been provided by a room air test to identify the objective need of an infant for supplemental respiratory support to reach 90% of oxygen saturation at a definite PMA. However, our dataset did not reliably provide this information.
The negative association between BPD and NDI strengthened substantially when infants were diagnosed with severe BPD between 36 and 40 weeks’ PMA. This provided a higher NDI MD, from 0.8 to 1.7 SD, than for infants without BPD. Similar observations have been reported previously10 12 but have not exhibited similar impact. The lack of association between BPD and the developmental scores of the Bayley-III may be explained by the small subgroup’s size reducing the power of analysis. In our study, the number of children affected by cerebral palsy, severe hearing and visual disability was not sufficient to draw any conclusion on a possible association between BPD and these morbidities.
Strength of this study is the size of the cohort, although the low prevalence of the severe forms of BPD implies wide CIs and high value of negative predictive value. Further study strengths are the prospective systematic data records concerning neonatal and neurodevelopmental variables, and the adjustment of the analyses for several confounding factors. The rate of infants lost to follow-up of 19% represents a limitation of the study. As gestational age and BPD rate were lower and higher, respectively, in infants visited at 2 years of corrected age than in those lost to follow-up, we might assume that we assessed a population sample with high neurodevelopmental risk. The other main study limitations are the retrospective approach, in which specific characteristics of the neonatal respiratory course of the study infants have been extracted from their clinical charts; the lack of information concerning a room air test for the classification of BPD severity; and the fact that the indication for respiratory support might have been influenced by a subjective judgement of the clinicians in charge.
These limitations might have introduced an information bias, especially within the group of infants with moderate BPD, among whom we observed the largest number of reclassifications to mild BPD between 36 and 40 weeks’ PMA. The inclusion of the various developmental tests used within this cohort represents another important limitation, because it might have introduced a bias in the classification of outcomes. However, the sensitivity analysis that focused purely on infants tested with Bayley-II (the largest group of infants within the cohort) supports the study conclusions.
Finally, as no local normative data for Bayley-III is available in Switzerland yet, we opted to set the cut-off for NDI at development scores below 85 and not below 70 for this test version. Despite recent literature21–23 in support of this choice, we cannot prove the assumption that Bayley-III tended to overestimate development in this cohort.
In conclusion, we found that, in this cohort, severe BPD was a better independent predictor of NDI at the age of 2 years than mild or moderate BPD. The diagnosis of severe BPD at 40 weeks’ PMA seems to allow better identification of infants at high risk of poor neurodevelopment than at 36 weeks’ PMA. As the generalisability of the present findings is reduced by the study limitations, further prospective studies are needed to confirm them. In addition to the present findings, respiratory outcome data are needed to support resetting the BPD definition so as to provide higher prognostic value than the current consensus.