Discussion
In this unselected population in a high-resource setting, newborn resuscitation was still a frequent concern, with more than 6% of all newborns requiring resuscitative interventions at birth. Most newborns responded to respiratory support alone, and the need for full cardiopulmonary resuscitation (ie, chest compressions and epinephrine boluses) was rare. Term newborns had the lowest incidence of interventions with higher incidences among near-term (34–36 weeks’ GA) and post-term (>42 weeks’ GA) newborns. All extreme preterm newborns (<28 weeks’ GA) received PPV, and the intubation rate was 54%.
We defined CPAP as a resuscitation intervention, as it is suggested in the ILCOR guidelines as a means to augment endogenous respiratory effort.4 Still, its indication is not clearly defined, and it is not a part of the resuscitation algorithm. In our study, more than 30% of the newborns receiving CPAP were evaluated as adequate breathers by the viewer, highlighting the uncertain necessity of the intervention.
The incidence of PPV in this study was lower than reported in studies conducted in low-resource settings.7–9 12 In high-resource settings with modern fetal monitoring and comprehensive obstetric care, the reported incidences vary substantially. Whether these differences represent an unwarranted variation in clinical practice, or different patient characteristics, is unknown. Niles et al found that 6% of newborns received PPV in a tertiary-level hospital in Philadelphia, however the caesarean section rate was near 30%, and near 50% received PPV for less than 60 s.13 A study from a tertiary-level hospital in Iran reported that only 2.8% of the newborns received PPV at birth, despite being a referral centre for high-risk deliveries with a study population including more than 20% premature newborns <37 weeks’ GA.15 This was, however, based on medical records alone and could suffer from under-reporting. Our findings are similar to previous findings from Norway by Skåre et al, for both incidence and duration of PPV, in a similar setting with a similar caesarean section rate.14 24 Our intubation rates of extreme premature <28 weeks’ GA were in line with nationally reported numbers.25
The incidence of full cardiopulmonary resuscitation was low and comparable to findings from other studies.5 8 15 26 Still, three of the newborns in our study received chest compressions for less than 1 min, suggesting proper airway handling might have been sufficient. When ILCOR revised their guidelines on newborn resuscitation in 2015, the recommended time of PPV before initiating chest compressions was prolonged, recognising that most compromised newborns will respond to adequate ventilatory support alone.4 Our findings may support this recommendation.
When comparing near-term or term newborns admitted to the NICU with those who were returned to their parents after resuscitation, there was a significant difference in Apgar scores, but no difference in arterial umbilical blood gases. Apgar score is used to evaluate the newborn’s condition after birth, and to determine the need for, and evaluate the effectiveness of, resuscitation.27 The decision on whether or not to admit a newborn to the NICU after resuscitation is commonly based on clinical judgement and therefore likely to correlate with the Apgar scores. Furthermore, umbilical cord blood gas, as a predictive value for outcomes, is inconclusive.28 29
The mean umbilical artery base excess (BE) in non-asphyxiated newborns is −4 to −4.8 mmol/L,30 31 and asphyxial injury does mostly not occur until fetal BE is ≤ −12 mmol/L.32 33 The reported umbilical blood gas values in our study showed low evidence of fetal distress, and the morbidity and mortality were low. This supports the assumption that the majority of newborns in need of resuscitative interventions primarily represent newborns that are not severely affected. Nevertheless, correct and timely management of these newborns is essential for good outcomes,7 with a potentially huge impact on socioeconomical perspectives.
This study has some limitations. It is a single-centre study with relatively few births, consequently the estimates for the incidences of low frequency interventions such as intubation, chest compressions and intravenous epinephrine are uncertain. We have no information on stimulation attempts in the delivery room prior to arrival at the resuscitation crib. Video cameras were not available at all resuscitation cribs. In particular, many of the NICU mobile resuscitation cribs were without a camera, resulting in a relatively higher missed video recording rate for premature newborns than for near-term and term newborns. This could potentially lead to an underestimation of the characteristics of the resuscitative interventions. There was a poor response rate when consent was asked by letters. This typically included newborns who were discharged early from hospital, and may represent a group where lesser interventions were required. Importantly, the results regarding incidences of resuscitative interventions were not consent or video dependent and therefore not affected by these potential biases.