Article Text

Download PDFPDF

Original research
Comparison of pulse oximetry and earlobe blood gas with CO-oximetry in children with sickle cell disease: a retrospective review
  1. Michele Arigliani1,
  2. Sean Zheng2,
  3. Gary Ruiz2,
  4. Subarna Chakravorty3,
  5. Cara J Bossley2,
  6. David Rees3,4,
  7. Atul Gupta2,4
  1. 1 Paediatric Respiratory Medicine and Lung Transplantation, Great Ormond Street Hospital for Children, London, United Kingdom
  2. 2 Department of Paediatric Respiratory Medicine, King’s College Hospital NHS Foundation Trust, London, UK
  3. 3 Department of Paediatric Haematology, King's College Hospital NHS Foundation Trust, London, UK
  4. 4 King's College London, London, United Kingdom
  1. Correspondence to Dr Atul Gupta; atul.gupta{at}kcl.ac.uk

Abstract

Objectives To investigate the agreement between pulse oximetry (SpO2) and oxygen saturation (SaO2) measured by CO-oximetry on arterialised earlobe blood gas (EBG) in children and adolescents with sickle cell disease (SCD).

Design and setting We retrospectively reviewed 39 simultaneous and paired SaO2 EBG and SpO2 measurements from 33 ambulatory patients with SCD (32 subjects with Haemoglobin SS and one with Haemoglobin Sß+, 52% male, mean±SD age 11.0±3.6, age range 5–18). Measurements were performed between 2012 and 2015 when participants were asymptomatic. Hypoxaemia was defined as SaO2 ≤93%. A Bland-Altman analysis was performed to assess the accuracy of SpO2 as compared with EBG SaO2.

Results The mean±SD SpO2 and SaO2 values in the same patients were, respectively, 93.6%±3.7% and 94.3%±2.9%. The bias SpO2–SaO2 was −0.7% (95% limits of agreement from −5.4% to 4.1%) and precision was 2.5%. In 9/39 (23%) cases, the difference in SpO2–SaO2 was greater than the expected error range ±2%, with SaO2 more often underestimated by SpO2 (6/9), especially at SpO2values ≤93%. Thirteen participants (33%) were hypoxaemic. The sensitivity of SpO2 for hypoxaemia was 100%, specificity 85% and positive predictive value 76%.

Conclusions Pulse oximetry was inaccurate in almost a quarter of measurements in ambulatory paediatric patients with SCD, especially at SpO2values ≤93%. In these cases, oxygen saturation can be confirmed through EBG CO-oximetry, which is easier to perform and less painful than traditional arterial blood sampling.

  • haematology
  • respiratory
http://creativecommons.org/licenses/by-nc/4.0/

This is an open access article distributed in accordance with the Creative Commons Attribution Non Commercial (CC BY-NC 4.0) license, which permits others to distribute, remix, adapt, build upon this work non-commercially, and license their derivative works on different terms, provided the original work is properly cited, appropriate credit is given, any changes made indicated, and the use is non-commercial. See: http://creativecommons.org/licenses/by-nc/4.0/.

View Full Text

Statistics from Altmetric.com

Footnotes

  • Twitter @‪@Lungclinic‬

  • Presented at Partial results from the present study have been previously presented in form of abstracts at international meetings.

  • Contributors MA performed the analysis and wrote the manuscript. SZ designed the data collection instruments, coordinated and undertook data collection, contributed to the manuscript and approved the final manuscript as submitted. AL, GR, SC, CJB, DR reviewed and revised the initial manuscript, and approved the final manuscript as submitted. AG conceptualised and designed the study, reviewed and revised the initial manuscript, and approved the final manuscript as submitted.

  • Funding The authors have not declared a specific grant for this research from any funding agency in the public, commercial or not-for-profit sectors.

  • Competing interests None declared.

  • Patient and public involvement Patients and/or the public were not involved in the design, or conduct, or reporting, or dissemination plans of this research.

  • Patient consent for publication Not required.

  • Provenance and peer review Not commissioned; externally peer reviewed.

  • Data availability statement Data are available upon reasonable request. Deidentified participant data are available upon reasonable request to the corresponding author (atul.gupta@kcl.ac.uk)

Request Permissions

If you wish to reuse any or all of this article please use the link below which will take you to the Copyright Clearance Center’s RightsLink service. You will be able to get a quick price and instant permission to reuse the content in many different ways.