Bowel preparation for elective procedures in children: a systematic review and meta-analysis

Morris Gordon,1,2 Fiona Karlsen,2 Sahira Isaji,2 Guan-Ong Teck2

ABSTRACT

Objective Reviews have investigated preparation for colonoscopy, but not for surgery. They are also often limited to patients up to 16 years, despite many paediatric gastroenterologists caring for older patients. We carried out a systematic review investigating the optimum bowel preparation agents for all indications in children and young people.

Design A Cochrane format systematic review of randomised controlled trials (RCTs). Data extraction and assessment of methodological quality were performed independently by two reviewers. Methodological quality was assessed using the Cochrane risk of bias tool.

Patients Young people requiring bowel preparation for any elective procedure, as defined by the primary studies.

Interventions RCTs comparing bowel preparation with placebo or other interventions.

Main outcome measures Adequacy of bowel preparation, tolerability and adverse events.

Results The search yielded 2124 results and 15 randomised controlled studies (n=1435) but heterogeneity limited synthesis. Meta-analysis of two studies comparing polyethylene glycol (PEG) with sodium phosphate showed no difference in the quality of bowel preparation (risk ratio (RR) 1.27 (95% CI 0.66 to 2.44)). Two studies comparing sodium picosulfate/magnesium citrate with PEG found no difference in bowel preparation but significantly higher number of patients needing nasogastric tube insertion in the polyethylene glycol-electrolyte lavage solution (RR 0.04 (95% CI 0.01 to 0.18), 45 of 117 in PEG group vs 2 of 121 in sodium picosulfate group). Meta-analysis of three studies (n=241) found no difference between PEG and sennosoids (RR 0.73 (95% CI 0.31 to 1.71)).

Conclusions The evidence base is clinically heterogeneous and methodologically at risk of bias. There is evidence that all regimens are equally effective. However, sodium picosulfate was better tolerated than PEG. Future research is needed with all agents and should seek to consider safety and tolerability as well as efficacy.

BACKGROUND

Bowel imaging is a crucial modality in the diagnosis and monitoring of inflammatory bowel disease, as well as surgery frequently being required in such patients. Multiple studies have suggested that bowel preparations must be individually tailored according to patient age, size and clinical status.1 However, currently there is no internationally recognised gold standard regimen for paediatric bowel preparations.2 Several regimens have been tried with the aim of identifying the safest, efficacious and tolerable combination, with varying success.3

Bowel preparation regimens can be based on lavage (bowel clean out) or cathartics (agents that accelerates defecation). Examples include large volume of polyethylene glycol-electrolyte lavage solution (PEG-ELS) lavage solution, sodium phosphate (an oral, low-volume, hyperosmotic agent), sodium picosulfate, bisacodyl and dietary measures, such as diet packs or clear liquid diets (often in combination with other agents).

Adequate bowel preparation prior to such procedures is crucial to ensure complete visualisation of the colonic mucosa (thus successful diagnostic and therapeutic colonoscopy, endoscopy and capsule endoscopy)
and to minimise the risk of possible contamination during surgery. Administration of the agents is much more problematic in children compared with adults who manage to take the agents readily. In uncooperative children, use of a nasogastric tube to administer the agents has been reported to be an effective method to guarantee bowel wash out. Reduced tolerance can result in poor outcomes due to inadequate preparation, increased rate of complications, extended procedural time and missed lesions. Additionally, side effects have previously been noted, such as hyperphosphataemia, in children who receive sodium phosphate.

While previous reviews have considered preparation for colonoscopy, they do not always consider surgical interventions and often limit their populations at the age of 16 years, despite it being normal practice for paediatric gastroenterologists to look after such patients for a number of years before transition to adult services.

We carried out an up-to-date systematic review using the Cochrane collaboration format to summarise the available evidence investigating the optimum bowel preparation agents for all indications in children and young people.

METHODS

The objectives of this review were to evaluate the efficacy and safety of different bowel preparation for young people for any indication. A full protocol for the study was completed by the authors prior to commencement of the study and is available on request. This set out the procedure for the search, study screening, data extraction, risk of bias evaluation and analysis.

Criteria for considering studies for this review

Randomised controlled trials (RCTs) were included in this systematic review. Participants were aged 0–21 years. This age range was selected after a scoping search and discussion with local stakeholders (tertiary centres) confirmed that it can be normal practice in paediatric gastroenterology for these patient groups to have variable transition to adult services, but 21 years was agreed as an absolute cut-off and reflected several studies that would otherwise be excluded. Studies with adults included that did not allow analysis of this. Paediatric age range was excluded. Studies compared bowel preparation with another bowel preparation or placebo, with all forms and dosing regimens considered. The purpose of bowel clearance was for colonoscopy or elective surgery. Studies were excluded if the purpose was to treat faecal impaction or encopresis. The primary outcome measure for the studies was the number of adequate bowel preparations, as defined by the included studies. Secondary outcomes included: tolerability (the proportion of children who could take the given therapy without the need for support through a nasogastric tube or incomplete dosing), duration of procedure, missed lesions due to inadequate bowel preparation and occurrence of any adverse events.

Search methods for identification of studies

Electronic searches (search strategy not limited by language) were completed using MEDLINE, The Cochrane Central Register of Controlled Trials, Embase and CINAHL (inception–15 July 2016) (online supplementary appendix 1). References of included trials were also searched. Manufacturers were contacted to identify further negative and unpublished research. Abstracts were considered for inclusion if full details to judge inclusion were offered or available from the authors after contact by the study team.

Data extraction and assessment of methodological quality of included studies were independently performed by two authors, and disagreements were solved with involvement of the third author.

Data collection and analysis

All identified abstracts and results from searches were reviewed by the authors. If the reference appeared relevant, a full copy of the study was obtained. After reading the full texts, each author independently assessed the eligibility of all trials identified based on the inclusion criteria above. Disagreement among authors was discussed, and agreement was reached by consensus. If the data to judge inclusion were unclear, attempts were made to contact the authors.

A data extraction form was developed and piloted to extract information on relevant features and results of all primary and secondary outcomes of included studies. The two reviewers separately extracted and recorded data on the predefined checklist, with disagreement discussed and consensus reached.

The risk of bias of selected trials was assessed independently by the authors using the Cochrane risk of bias tool with disagreement once again resolved by reaching consensus. Study authors were contacted for further information when insufficient information was offered to judge risk of bias or data were missing for primary outcomes. Analysis was completed using Revman (Review Manager 5.2, V.5.2.9, The Nordic Cochrane Centre, The Cochrane Collaboration, Copenhagen, Denmark, 2012).

The primary outcome—efficacy of bowel preparation agents—was assessed using the risk ratio (RR) with 95% CI. The secondary outcomes were assessed by calculating the RR and 95% CI or the mean difference (MD) with 95% CI, as indicated. The authors of included studies were again contacted to supply any missing data. Heterogeneity among trial results was assessed by inspection of graphical presentations and by calculating the χ² test of heterogeneity (a p value of 0.10 was regarded as statistically significant). We also used the I² statistic to quantify the effect of heterogeneity. A result of less than 25% was defined as low, up to 75% as moderate and above 75% as high heterogeneity. A random-effects model was used, with a sensitivity analysis with the fixed-effects model.
to identify differences in results that would suggest heterogeneity.

RESULTS

The electronic database search identified 2124 studies that were screened for inclusion. Of these, 15 studies (n=1435) were judged to be potentially relevant and subjected to full-text review (figure 1). Only 12 papers needed consideration of a third author (less than 1%) to reach consensus, with 1 included and 11 excluded. Experts were contacted, but no extra reports were received and no further studies were identified from drug companies.

Description of studies

Excluded studies

Nine reports were excluded for failing to meet the inclusion criteria. Five were not solely with patients under 21 years of age, three were not RCTs and one was an abstract with insufficient data to judge inclusion.

Included studies

The 15 RCTs included described various regimens and comparative agents, with nine included in quantitative analysis (table 1) and the remaining six in qualitative analysis (table 2). Four studies compared various different regimens and combinations of polyethylene glycol (PEG), two compared PEG with oral sodium phosphate, two compared PEG with normal saline, three compared multiple combinations of PEG, sennasoids and sodium picosulphate, two diet kits with sodium phosphate, one study compared sodium picosulfate with phosphate enemas and one sodium picosulfate with PEG.

Risk of bias of included studies

Seven studies were rated as low risk for random sequence generation (selection bias) because these studies employed computer-generated randomisation. The remaining studies described themselves as randomised but, with no further details given or available from authors, were rated as unclear risk of bias.

Five studies were rated as low risk of bias for allocation concealment (selection bias). Nine remaining studies were rated as unclear risk of bias for allocation concealment as the methods were not clearly described in the manuscripts. One described the allocated researcher as performing colonoscopies and was rated as high risk.

Ten studies were blinded and were judged to be at low risk of bias for blinding of personnel (performance bias) for such an intervention. Four studies described themselves as blinded but gave no further details so was rated as unclear risk of bias. One study was open label and judged to be at high risk of bias for blinding.

Eight studies reported full and appropriate data and satisfactorily documented withdrawals and dropouts and were therefore judged to be at low risk of bias for incomplete outcome data (attrition bias), and nine were judged as low risk for selective reporting (reporting bias). Two studies did not record full data for all patients and were judged high risk of bias for attrition bias. Four studies did not offer outcome data regarding side effects and tolerability so were judged at high risk for reporting bias.

All studies were judged to be at low risk for other sources of bias. However, the small sample size of many of these studies is concerning, suggesting they were pilot or similarly underpowered studies, raising a further concern regarding bias. Details are summarised in table 1.

The 15 studies present significant clinical and methodological heterogeneity (table 1), and this severely limits the scope for synthesis.

PEG VERSUS SENNASOIDS

Meta-analysis of three studies (n=241)7–9 found no difference between PEG and sennasoids in adequate bowel preparation (RR 0.73 (95% CI 0.31 to 1.76), figure 2). High statistical heterogeneity was noted. Data regarding tolerability and safety were not presented to allow synthesis.

Sodium picosulfate and magnesium citrate versus PEG-ELS

Within these two studies versus PEG-ELS,10 11 equivalent adequacy of bowel preparation was seen (RR 0.99 (95% CI 0.89 to 1.11), figure 3). PEG’s acceptability was reportedly poorer than sodium picosulfate in both studies. Meta-analysis of two PEG-ELS studies using the random effects model found a significantly higher number of patients needing nasogastric tube insertion in the PEG-ELS group (45 of 117) than the sodium picosulfate group (2 of 121) (RR 0.04 (95% CI 0.01 to 0.18), figure 4).

Figure 1 Patient flow diagram.
Table 1 Characteristics of studies included in quantitative analysis and risk of bias ratings

<table>
<thead>
<tr>
<th>Study</th>
<th>Year</th>
<th>No</th>
<th>Age</th>
<th>Regimen 1</th>
<th>Regimen 2</th>
<th>Regimen 3</th>
<th>Regimen 4</th>
<th>Main outcomes reported in the study</th>
<th>Context</th>
<th>Randomisation</th>
<th>Allocation concealment</th>
<th>Blinding</th>
<th>Incomplete outcomes</th>
<th>Selective reporting</th>
<th>Other</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gremse et al</td>
<td>1996</td>
<td>34</td>
<td>3–17 years</td>
<td>Sodium phosphate</td>
<td>PEG</td>
<td>N/A</td>
<td>N/A</td>
<td>The bowel preparation was excellent or good in 18/19 patients in sodium phosphate Group and 6/15 in PEG group. The incidence of vomiting was similar in both groups, but abdominal pain occurred more in PEG group.</td>
<td>Elective colonoscopy</td>
<td>Unclear—one of the authors randomised patients into groups</td>
<td>One of the authors assigned the patients to their groups, also perform colonoscopies</td>
<td>Unclear, no ITT</td>
<td>High—details of adverse events not given</td>
<td>None</td>
<td></td>
</tr>
<tr>
<td>Sinha et al</td>
<td>2007</td>
<td>126</td>
<td>Mean 3 years</td>
<td>Sodium chloride</td>
<td>PEG</td>
<td>Ringer lactate</td>
<td>N/A</td>
<td>Bowl preparation was good in 35/40 in Nacl group, 49/65 in PEG group and 29/31 of lactate group. All three were similar in safety</td>
<td>Elective surgery</td>
<td>Unclear</td>
<td>Unclear</td>
<td>Appear single blind</td>
<td>Low risk</td>
<td>Unclear, risk None</td>
<td></td>
</tr>
<tr>
<td>Kerkus et al</td>
<td>2013</td>
<td>240</td>
<td>10–18 years</td>
<td>BPEG</td>
<td>PEG</td>
<td>Sennosides</td>
<td>N/A</td>
<td>There were no significant differences found for the proportions of participants with excellent/good (PEG: 35/78, BPEG: 26/79, sennosides: 25/78) bowel preparation</td>
<td>Elective colonoscopy</td>
<td>List created by independent person using block</td>
<td>Yes</td>
<td>Single blind</td>
<td>Low risk</td>
<td>Low risk</td>
<td>None</td>
</tr>
<tr>
<td>Kumar and Hussain</td>
<td>2013</td>
<td>30</td>
<td>1 month–7 years</td>
<td>Normal saline</td>
<td>PEG</td>
<td>N/A</td>
<td>N/A</td>
<td>Bowl preparation was rated as good/very good in 14/15 in the PEG group and 15/15 in the NS group. More symptomatic complications were noted in the NS group (7) than in the PEG group (1).</td>
<td>Various surgical procedures</td>
<td>Unclear</td>
<td>Unclear</td>
<td>Unclear</td>
<td>Low risk</td>
<td>Funded by pharma but not involved in study</td>
<td></td>
</tr>
<tr>
<td>Turner et al</td>
<td>2009</td>
<td>83</td>
<td>4–18 years</td>
<td>Pico-Salax</td>
<td>PEG-ELS</td>
<td>N/A</td>
<td>N/A</td>
<td>Bowl preparation was judged as good/excellent in 33/40 of Pico-Salax group and 32/40 PEG-ELS group. No significant difference in safety was found between the groups</td>
<td>Elective colonoscopy</td>
<td>Computer-generated list in blocks of 6</td>
<td>Yes</td>
<td>Single blind</td>
<td>Yes</td>
<td>Low risk</td>
<td>None apparent</td>
</tr>
<tr>
<td>Di Nardo et al</td>
<td>2014</td>
<td>299</td>
<td>2 years–18 years</td>
<td>PEG-ELS with simethicone</td>
<td>PEG</td>
<td>PEG with citrate and bisacodyl</td>
<td>PEG 3350 with ascorbic acid</td>
<td>Sodium picosulfate, Magnesium oxide+ citric acid</td>
<td>No statistical difference was found between any group using the Boston scoring system (p=0.910). No serious adverse events occurred in any group.</td>
<td>Elective colonoscopy</td>
<td>Computer generated list</td>
<td>Opaque sealed signed envelop</td>
<td>Unblind</td>
<td>Low risk</td>
<td>Low risk</td>
</tr>
<tr>
<td>Dahshan et al</td>
<td>1999</td>
<td>70</td>
<td>3–20 years</td>
<td>Magnesium citrate with X-prep</td>
<td>Dulcolax and Fleet Enema</td>
<td>Golytely (PEG)</td>
<td>N/A</td>
<td>Bowl preparation was rated as excellent in 6/20 of X-prep group, 2/19 Dulcolax and 15/31 of PEG group. Statistically more side effects were reported in the PEG group.</td>
<td>Elective colonoscopy</td>
<td>No detail given</td>
<td>Unclear</td>
<td>Single blind</td>
<td>Low risk</td>
<td>Low risk</td>
<td>None apparent</td>
</tr>
</tbody>
</table>

Continued
<table>
<thead>
<tr>
<th>Study</th>
<th>Year</th>
<th>Age</th>
<th>Regimen 1</th>
<th>Regimen 2</th>
<th>Regimen 3</th>
<th>Regimen 4</th>
<th>Main outcomes reported in the study</th>
<th>Context</th>
<th>Randomisation</th>
<th>Allocation concealment</th>
<th>Blinding</th>
<th>Incomplete outcomes</th>
<th>Selective reporting</th>
<th>Other</th>
</tr>
</thead>
<tbody>
<tr>
<td>Terry et al²</td>
<td>2013</td>
<td>6–21 years</td>
<td>PEG-P</td>
<td>Senna</td>
<td>N/A</td>
<td>N/A</td>
<td>Bowel preparation was rated as excellent/good in 14/16 of PEG-P group and 4/14 of the senna group. Both were well tolerated by patient-graded ease of preparation.</td>
<td>Elective colonoscopy</td>
<td>Randomly chosen preparation packet</td>
<td>A nurse administer – no further details</td>
<td>Single blind</td>
<td>Low risk</td>
<td>Low risk</td>
<td>None apparent</td>
</tr>
<tr>
<td>da Silva et al³</td>
<td>1997</td>
<td>3–14 years</td>
<td>Sodium phosphate</td>
<td>PEG</td>
<td>N/A</td>
<td>N/A</td>
<td>Excellent-to-good colonic cleansing was achieved in 10/14 in sodium phosphate group and 11/15 of PEG group. Patients recorded less discomfort with orally administered Fleet than with high-volume balanced-lavage preparation.</td>
<td>Elective colonoscopy</td>
<td>Computer generated and randomly assigned</td>
<td>Unclear risk</td>
<td>Unclear risk</td>
<td>Unclear</td>
<td>High risk</td>
<td>None apparent</td>
</tr>
</tbody>
</table>

PEGVERSUS NORMAL SALINE

There were two studies comparing 63 participants in 104 patients for adequate bowel preparation (RR 0.95 (95% CI 0.87 to 1.04), figure 5). Adverse events were not reported homogenously to allow analysis, but occurred in both groups, including abdominal pain and vomiting.

PEGVERSUS SODIUM PHOSPHATE

Meta-analysis of two studies (n=125) comparing PEG with normal saline found no difference in rate of adequate bowel preparation (RR 0.95 (95% CI 0.87 to 1.04), figure 5). Adverse events were not reported homogenously to allow analysis, but occurred in both groups, including abdominal pain and vomiting.

Degan et al.²⁸ reported no difference in rate of adequate bowel preparation (RR 0.95 (95% CI 0.87 to 1.04), figure 5). Adverse events were not reported homogenously to allow analysis, but occurred in both groups, including abdominal pain and vomiting.

Within the remaining studies, no meta-analysis was possible. However, no individual study found any difference in adequacy of bowel preparation. Failure in bowel preparation across studies was not well reported across studies. As these were reported differently, no meta-analysis was performed. No serious adverse events were reported. No serious adverse events were reported.

BPEG, polyethylene glycol combined with bisacodyl; ITT, intention to treat; N/A, not applicable; NACL, sodium chloride; NS, normal saline; PEG, polyethylene glycol; PEG-ELS, polyethylene glycol-electrolyte lavage solution; PEG-P, polyethylene glycol without electrolytes.
Table 2: Characteristics of studies included in qualitative analysis and risk of bias ratings

<table>
<thead>
<tr>
<th>Study</th>
<th>Year</th>
<th>No</th>
<th>Age</th>
<th>Regimen 1</th>
<th>Regimen 2</th>
<th>Main outcomes reported in the study</th>
<th>Context</th>
<th>Randomisation</th>
<th>Allocation concealment</th>
<th>Blinding</th>
<th>Incomplete outcomes</th>
<th>Selective reporting</th>
<th>Other</th>
</tr>
</thead>
<tbody>
<tr>
<td>Trautwein</td>
<td>1996</td>
<td>140</td>
<td>5–18 years</td>
<td>X-Pep and sodium phosphate</td>
<td>Magnesium citrate and sodium phosphate</td>
<td>No significant difference reported between bowel preparations for the two regimens. No safety concerns were raised, but numbers of adverse events were not described</td>
<td>Elective colonoscopy</td>
<td>Unclear</td>
<td>Unclear</td>
<td>Unclear</td>
<td>Unclear</td>
<td>Unclear</td>
<td>None apparent</td>
</tr>
<tr>
<td>Pinfield</td>
<td>1999</td>
<td>63</td>
<td>18 months – 16 years</td>
<td>Picolax</td>
<td>Bisacodyl–phosphate enema</td>
<td>Bowel preparation was good or excellent in all of the patients in the picolax group (n=32) compared with 22 patients in the bisacodyl phosphate enema group (n=31). Abdominal discomfort was reported by seven in the picolax group vs 16 in the bisacodyl group and vomiting by three in the picolax group and 0 in the bisacodyl group.</td>
<td>Elective colonoscopy</td>
<td>Unclear</td>
<td>Sealed envelopes</td>
<td>Single blind</td>
<td>High risk—only adverse events</td>
<td>High risk</td>
<td>None apparent</td>
</tr>
<tr>
<td>Elitsur</td>
<td>2013</td>
<td>93</td>
<td>Mean 10 years</td>
<td>4-day protocol PEG 3350</td>
<td>2-day protocol PEG 3350 + bisacodyl</td>
<td>Adequate colon preparation was reached in 57.5% of regimen 1 and 73.6% of regimen 2. Side effects were reported as minimal and comparable in both groups (abdominal pain: 26%–32%, vomiting: 2%). None of the children discontinued his protocol due to side effects</td>
<td>Elective colonoscopy</td>
<td>Computer-generated random list</td>
<td>Unclear</td>
<td>Unclear</td>
<td>Unclear</td>
<td>Low risk</td>
<td>None apparent</td>
</tr>
<tr>
<td>Soran</td>
<td>2014</td>
<td>32</td>
<td>2–21 years</td>
<td>1-day PEG 3350 Max 255g</td>
<td>3-day PEG 3350 max 85g/day</td>
<td>A grading of excellent or good was given to 18/18 in regimen 1 and 13/14 in regimen 2. In regimen 1, 5 reports of minor side effects were made versus 10 reports in regimen 2.</td>
<td>Elective colonoscopy</td>
<td>No detail given</td>
<td>Unclear</td>
<td>Single blind</td>
<td>Low risk</td>
<td>Low risk</td>
<td>None apparent</td>
</tr>
<tr>
<td>Najafi</td>
<td>2015</td>
<td>100</td>
<td>2–14 years</td>
<td>1 day 2g/kg PEG+Bisacodyl Suppository</td>
<td>2 day 1.5 g/kg PEG+Bisacodyl Suppository</td>
<td>A grading of excellent or good was given to 35/50 in regimen 1 and 36/50 in regimen 2. Regimen 1 1/18 complained of nausea, 1/18 vomiting and 4/18 abdominal pain vs 3/14 nausea, 3/14 vomiting and 3/14 of abdominal pain in regimen 2.</td>
<td>Elective colonoscopy</td>
<td>Computer-generated random numbers</td>
<td>A technician randomly assign</td>
<td>Single blind</td>
<td>Low risk</td>
<td>Low risk</td>
<td>None apparent</td>
</tr>
<tr>
<td>El-Baba</td>
<td>2006</td>
<td>62</td>
<td>4–18 years</td>
<td>Prepackaged food kit, magnesium citrate</td>
<td>Sodium phosphate</td>
<td>Quality of colon cleansing rated as excellent in 89% of regimen 1 and 97% of regimen 2. 30/96 in group 1 reported minor side effects versus 26/96 in group 2.</td>
<td>Elective colonoscopy</td>
<td>Computer random number generator</td>
<td>Unclear</td>
<td>Single blind</td>
<td>Unclear</td>
<td>Low risk</td>
<td>None apparent</td>
</tr>
</tbody>
</table>

PEG, polyethylene glycol.
for meta-analysis has significantly limited synthesis. In multiple small analyses, PEG-ELS, senna, normal saline, sodium phosphate and sodium picosulfate/magnesium citrate found no difference in adequacy of bowel preparation. This was similar across the remaining individual studies. As such, despite the significant weaknesses of the evidence base, it is worth noting that no difference in adequacy of bowel preparation has been reported in any included study. This was also the case with adverse events, although it must be noted these were reported in an extremely heterogeneous fashion, with individual minor, major and patient overall recording of events across studies.

Of note, there was a significant difference in favour of sodium picosulfate and magnesium citrate regarding tolerability, specifically the need for a nasogastric tube to complete the bowel preparation. This is a particularly interesting finding, as the primary studies highlighted that while tolerability of PEG was extremely poor, smaller volumes than planned appeared to have little impact on efficacy. This raises the question of the need for the nasogastric tube at all and so this may need further investigation in the future. Sodium picosulfate was also compared with bisacodyl and a phosphate enema in a single study with equivocal preparation, tolerability and safety reported.

PEG appeared to be the least tolerable agent across all studies, with a number of the patients requiring a nasogastric tube insertion, but this is from qualitative synthesis of individual studies, with this outcome reported in heterogeneous fashion so meta-analysis was not possible. Additionally, as the age ranges of included participants varied greatly, it is hard to make firm conclusions on this finding as the need for nasogastric tubes is likely to be very age dependent. Oral sodium phosphate was well tolerated in individual studies. Despite the satisfactory tolerability and safety profile of sodium phosphate, it should be noted that care must be taken when using this agent as it can cause significant electrolyte imbalances. As such, it should not be used in patients with deranged baseline electrolytes, suboptimal renal and hepatic function, as it poses a risk of acute kidney injury and phosphate nephropathy.19

With all the agents studied, the occurrence of minor adverse events such as abdominal pain, bloating, faecal incontinence, nausea, vomiting, headaches and anal irritation was comparable. No serious adverse events were reported in any of the studies. It should also be noted that in the context of elective surgery, there is growing recognition of the role for proceeding without bowel preparation.20

Figure 2 Forest plot for PEG versus senna: adequacy of bowel preparation. PEG, polyethylene glycol.

Figure 3 Forest plot for sodium picosulfate and magnesium citrate versus polyethylene glycol-electrolyte lavage solution (PEG-ELS): adequacy of bowel preparation.

Figure 4 Forest plot for sodium picosulfate and magnesium citrate versus polyethylene glycol-electrolyte lavage solution (PEG-ELS): tolerability of agent.
The evidence base for this review covers a large number of trials with a reasonable number of patients but is severely limited due to clinical and methodological heterogeneity, as well as concerns with risk of bias. As such, the findings of this review should be interpreted with extreme caution as it is difficult to draw firm conclusions for any of the investigated agents. It must also be noted that, for the primary outcome, successful bowel preparation was “as defined” by primary studies, with several different scoring systems and criteria used. This also limits the appropriateness of meta-analysis in this context, although those wishing to complete future studies should note the Ottawa scoring system was the only such scoring method reported in multiple studies. This is also true of adverse events, which were reported in a sporadic and inconsistent manner that prevented comment on even simple complaints, such as nausea or vomiting.

Considering the small sample sizes, the high degree of heterogeneity and a wide variation in the regimen of each cleansing agent, the findings of this review cannot be reliably used to inform clinical practice but most usefully should inform future research. In particular, as the question of adequacy of bowel preparation has been established as essentially equivocal among all study agents, a shift of focus for future studies is needed. Given the unique needs of a paediatric population, considering the issue of tolerability as a primary outcome is vital, and looking at the lower volume options presented as enteral agents could offer potential practical advantages and need a high-quality study to investigate them.

CONCLUSIONS
The publishing evidence base investigating this issue is large but is clinically heterogeneous and at risk of bias. All regimens appear equivocal for adequacy of bowel preparation. However, when compared with sodium picosulfate, sodium picosulfate is better tolerated. Future research should seek to consider safety and tolerability, as well as efficacy, given the key importance of these issues in a childhood population.

REFERENCES

