LOW FIDELITY IN SITU SIMULATIONS FOR SUPPORTING LEARNING

Kee Wei Phang, Poonam Patel. UK

10.1136/bmjpo-2021-RCPCr.67

Background Simulation training has steadily been gaining traction in the medical training curriculum. Trainees are exposed to it from medical school in a simulation suite through to resuscitation courses such as the Advanced Paediatric Life Support. Majority of post graduate simulation training occurs in an artificial environment such as simulation suites which attempts to replicate the actual clinical environment with limited success. The simulation team in North Middlesex University Hospital Emergency Department (ED) identified a need for increased simulation training to improve trainee confidence in managing a range of cases presenting to the ED, enhance inter-departmental team working and achieve core training competencies in a safe but realistic environment. In order to achieve this, a fully immersive simulation experience through low fidelity in situ simulation training is carried out in the department with participants performing their usual clinical roles.

Objectives
1. Provide a full immersive simulation experience for trainees, to enhance learning and improve clinical knowledge, skills and attitude.
2. Identification of latent errors within the working environment and the clinical processes.
3. Develop a more collaborative working relationship between ED and other departments through joint simulation exercises, fostering multidisciplinary teamwork.

Methods Low fidelity in situ simulation training is carried out weekly in the ED by the ED simulation faculty, usually comprising of the simulation fellow, a consultant and a senior staff nurse trained in providing feedback. Participants were identified at the start of the shift and given a pre-brief before commencement of the simulation. When the simulation concluded, the simulation faculty would facilitate the debrief, allowing for active discussion of any issues arising from the simulation. At the end of the session, feedback was then collected electronically on Survey Monkey and the data analysed to determine if the simulation session met its objectives.

Results
1. 93% of participants felt that it was relevant to their training
2. 94% of participants felt that it was a safe learning environment.
3. 85% of participants felt that they had achieved some clinical learning from the session.
4. Improved multidisciplinary team working was evident through the active participation of student nurses, nurses, doctors of different specialties in the sessions.
5. Identification of latent errors: It was noted from the simulation sessions that the anaesthetic team was unfamiliar with the anaesthetic equipment available to them in the new paediatric ED wing and work is currently being undertaken to support the anaesthetic team in familiarising with the new environment.

Conclusions Low fidelity in situ simulation training provides a cost effective, safe and realistic learning environment for trainees. It is also able to identify any latent errors within the clinical environment and/or pathways in the department and promotes a standardisation of practice because it was conducted in the actual clinical space. In addition, it fosters a more collaborative working relationship between departments who would otherwise not have the opportunity to develop this relationship. Therefore, through in situ simulation training, it has a potential to improve clinical care and enhances patient safety; and should form an integral part of paediatric training.

EFFECTIVENESS OF ORAL SEDATION FOR MRI IN YOUNG CHILDREN- EXPERIENCE IN A DISTRICT HOSPITAL

Rajesh Balu, Sean Brennan. UK

10.1136/bmjpo-2021-RCPCr.68

Background Elective MRI scans require a child to stay still, which is often achieved with either oral sedation or a general anaesthetic in a young child or those with cognitive or behavioural difficulties.

There is limited provision for use of general anaesthetic for elective MRIs within our DGH and majority of elective neuroimaging is done using oral sedation. The local protocol uses combination of Alimemazine Tartrate and Chloral Hydrate to achieve sedation in young children.

Objectives A service review was undertaken to assess effectiveness of oral sedation, complications and achievement of high quality MRI images.

Methods Elective appointments at paediatric day unit were evaluated retrospectively for 12 months from March 2019 to February 2020 (before the Covid-19 pandemic affected local services).

Data was analysed for 64 patients from electronic health records to look for effectiveness of sedation and outcomes.

Data was not evaluated for 8 children who were not brought for their appointment, 1 child who was not adequately fasted and 3 children who attended late so missed their MRI slot.