BMJ Paediatrics Open is committed to open peer review. As part of this commitment we make the peer review history of every article we publish publicly available.

When an article is published we post the peer reviewers' comments and the authors' responses online. We also post the versions of the paper that were used during peer review. These are the versions that the peer review comments apply to.

The versions of the paper that follow are the versions that were submitted during the peer review process. They are not the versions of record or the final published versions. They should not be cited or distributed as the published version of this manuscript.

BMJ Paediatrics Open is an open access journal and the full, final, typeset and author-corrected version of record of the manuscript is available on our site with no access controls, subscription charges or pay-per-view fees (<u>http://bmjpaedsopen.bmj.com</u>).

If you have any questions on BMJ Paediatrics Open's open peer review process please email <u>info.bmjpo@bmj.com</u>

Development and validation of a risk prediction model for medication administration errors in neonates: a study protocol

Journal:	BMJ Paediatrics Open
Manuscript ID	bmjpo-2022-001765
Article Type:	Protocol
Date Submitted by the Author:	09-Nov-2022
Complete List of Authors:	Henry Basil, Josephine; Universiti Kebangsaan Malaysia, Centre for Quality Management of Medicines, Faculty of Pharmacy Premakumar, Chandini Menon; Universiti Kebangsaan Malaysia, Centre for Quality Management of Medicines, Faculty of Pharmacy Mhd Ali, Adliah; Universiti Kebangsaan Malaysia, Centre for Quality Management of Medicines, Faculty of Pharmacy Mohd Tahir, Nurul Ain; Universiti Kebangsaan Malaysia, Centre for Quality Management of Medicines, Faculty of Pharmacy Seman, Zamtira; Ministry of Health Malaysia, Sector for Biostatistics & Data Repository, National Institutes of Health Mohamed Shah, Noraida; Universiti Kebangsaan Malaysia, Centre for Quality Management of Medicines, Faculty of Pharmacy
Keywords:	Neonatology

SCHOLARONE[™] Manuscripts

I, the Submitting Author has the right to grant and does grant on behalf of all authors of the Work (as defined in the below author licence), an exclusive licence and/or a non-exclusive licence for contributions from authors who are: i) UK Crown employees; ii) where BMJ has agreed a CC-BY licence shall apply, and/or iii) in accordance with the terms applicable for US Federal Government officers or employees acting as part of their official duties; on a worldwide, perpetual, irrevocable, royalty-free basis to BMJ Publishing Group Ltd ("BMJ") its licensees and where the relevant Journal is co-owned by BMJ to the co-owners of the Journal, to publish the Work in this journal and any other BMJ products and to exploit all rights, as set out in our <u>licence</u>.

The Submitting Author accepts and understands that any supply made under these terms is made by BMJ to the Submitting Author unless you are acting as an employee on behalf of your employer or a postgraduate student of an affiliated institution which is paying any applicable article publishing charge ("APC") for Open Access articles. Where the Submitting Author wishes to make the Work available on an Open Access basis (and intends to pay the relevant APC), the terms of reuse of such Open Access shall be governed by a Creative Commons licence – details of these licences and which <u>Creative Commons</u> licence will apply to this Work are set out in our licence referred to above.

Other than as permitted in any relevant BMJ Author's Self Archiving Policies, I confirm this Work has not been accepted for publication elsewhere, is not being considered for publication elsewhere and does not duplicate material already published. I confirm all authors consent to publication of this Work and authorise the granting of this licence.

for Review Only

2 3 4	1	Development and validation of a risk prediction model for medication administration
5 6	2	errors in neonates: a study protocol
7 8 9	3	
10 11	4	Josephine Henry Basil ¹ , Chandini Menon Premakumar ¹ , Adliah Mhd Ali ¹ , Nurul Ain Mohd
12 13	5	Tahir ¹ , Zamtira Seman ² , Noraida Mohamed Shah ^{*1}
14 15 16	6	
17 18	7	¹ Centre for Quality Management of Medicines, Faculty of Pharmacy, Universiti Kebangsaan
19 20	8	Malaysia, Jalan Raja Muda Abdul Aziz, 50300 Kuala Lumpur, Malaysia.
21 22 23	9	² Sector for Biostatistics & Data Repository, National Institutes of Health, Ministry of Health
24 25	10	Malaysia, Shah Alam, Selangor
26 27	11	
28 29 30	12	*Corresponding Author:
31 32	13	Full name: Noraida Mohamed Shah
33 34	14	Postal address: Centre for Quality Management of Medicines, Faculty of Pharmacy,
35 36 37	15	Universiti Kebangsaan Malaysia, Jalan Raja Muda Abdul Aziz, 50300 Kuala Lumpur,
38 39	16	Malaysia.
40 41	17	E-mail addresses: noraida_mshah@ukm.edu.my
42 43 44	18	Co-authors: Full name: Josephine Henry Basil Department: Faculty of Pharmacy
45 46	19	Co-authors:
47 48	20	
49 50 51	21	Full name: Josephine Henry Basil
52 53	22	Department: Faculty of Pharmacy
54 55	23	Institution: Universiti Kebangsaan Malaysia
56 57 58	24	City: Kuala Lumpur
59 60	25	Country: Malaysia

2		
3 4	26	Full name: Dr. Chandini Menon Premakumar
5 6	27	Department: Faculty of Pharmacy
7 8	28	Institution: Universiti Kebangsaan Malaysia
9 10 11	29	City: Kuala Lumpur
12 13	30	Country: Malaysia
14 15	31	
16 17	32	Full name: Dr. Adliah Mhd Ali
18 19 20	33	Department: Faculty of Pharmacy
21 22	34	Institution: Universiti Kebangsaan Malaysia
23 24	35	City: Kuala Lumpur
25 26 27	36	Country: Malaysia
28 29	37	
30 31	38	Full name: Dr. Nurul Ain Mohd Tahir
32 33 34	39	Department: Faculty of Pharmacy
34 35 36	40	Institution: Universiti Kebangsaan Malaysia
37 38	41	City: Kuala Lumpur
39 40	42	Country: Malaysia
41 42 43	43	
44 45	44	Full name: Zamtira Seman
46 47	45	Department: Sector for Biostatistics & Data Repository
48 49 50	46	Institution: Ministry of Health Malaysia
50 51 52	47	City: Shah Alam
53 54	48	Country: Malaysia
55 56	49	
57 58 59	50	Word count: 2421
60		

51 ABSTRACT

53 Introduction

Medication administration errors (MAEs) are the most commonly occurring type of medication errors (MEs) and they are found to be more common amongst neonates as compared to adults. They also result in severe patient harm and significant economic burden to the healthcare system. Targeting and prioritizing neonates at high risk of MAEs is crucial in reducing MAEs. To the best of our knowledge, a predictive risk score identifying neonates at risk of MAEs is not yet available. Therefore, this study aims to develop and validate the risk prediction model to identify neonates at risk of MAEs.

9.

62 Methods and analysis

This is a multicentre, nationwide, prospective direct observational study in which a minimum of 1,097 preparation and administration of medications are directly observed. Data such as patient characteristics, drug preparation and administration related data, and other procedures will be recorded. After each round of observation, the observer will compare his/her observations with the prescriber's medication order, hospital policies and manufacturer's recommendations to determine whether MAE has occurred. To ensure reliability, error identification will be independently performed by two raters after the completion of data collection for all study sites. Any disagreements will be discussed with the research team for consensus. To reduce overfitting and improve the quality of risk predictions, we have prespecified a priori our analytical plan such as prespecifying the candidate predictor variables, handling of missing data and validation of the developed model. The model's performance will also be assessed. Finally, various modes of presentation formats such as a simplified scoring tool or web-based electronic risk calculators will be considered.

1		
2 3 4	76	
5 6	77	Ethics and dissemination
7 8 9	78	This study protocol was approved by the Medical Research and Ethics Committee (MREC),
9 10 11	79	Ministry of Health Malaysia, with the identification number of NMRR-21-1484-59494 (IIR).
12 13	80	Findings from our study will be disseminated through presentations at scientific conferences
14 15	81	and peer-reviewed publications.
16 17 18	82	
19 20	83	What is already known on this topic
21 22	84	• The aetiology of MAEs is multifactorial and complex.
23 24 25	85	• It may be caused by unsafe acts such as slips and lapses, rule- and knowledge-based
26 27	86	mistakes, violations and/or latent conditions such as an error-producing environment
28 29	87	due to decisions made by higher organisational levels.
30 31 32	88	• Non-adherence to policies, lack of knowledge, similar look-a-like and sound-a-alike
33 34	89	medications, lack of nurses and lack of training are amongst the many factors
35 36	90	contributing to MAEs in neonates.
37 38 39	91	
40 41	92	What this study adds
42 43	93	• We anticipate that the newly developed model will be used to identify neonates at risk
44 45 46	94	of MAEs, produce estimates of future MAEs amongst them and the risk factors
40 47 48	95	commonly associated with MAEs.
49 50	96	commonly associated with MAES.
51 52 53	97	How this study might affect research, practice, or policy
55 54 55	98	• We hope that the information attained will assist policymakers and stakeholders
56 57	99	conduct timely assessments of MAEs and discussion of the need for the implementation
58 59 60	100	of interventions amongst neonates at the highest risk to prevent an impending MAE.

101 INTRODUCTION

Medication errors (MEs) may arise throughout the medication use process which consists of prescribing, transcribing, dispensing, administration, and monitoring [1]. Medication administration errors (MAEs) were found to be the most commonly occurring error as compared to prescribing and dispensing, amounting to more than 50% of all MEs [2, 3]. MAEs were not only associated with the highest number of incidents resulting in death and severe harm as compared to the other stages of the medication use process, but they also lead to significant economic burden from the utilization of healthcare services [4, 5]. It is estimated that approximately 4000 patients may be harmed from a total of 6 million medication doses administered among hospitalized patients and this is expected to consume between USD25 and 35 million annually [6]. A systematic review of all types of MEs reported that the prevalence of MAEs amongst neonates is found to range between 31% and 63% as compared to adults which ranged between 14.6% and 41% [7].

⁵ 115

A key aspect to a successful intervention is targeting and prioritizing patients at high risk of MEs to improve medication safety [8]. Several risk scores have been developed to identify patients at risk of MEs. Some identify MEs amongst hospitalized adults [9], at admission or discharge [10, 11]. Others specifically identify patients at risk of prescribing errors [12, 13]. The Automated Medication Error Risk Assessment System (Auto-MERAS) [14] was the only tool developed and validated to predict MAEs. However, it was developed and validated amongst hospitalized adults using incident reports extracted from the local safety reporting system. Although the use of incident reports to measure MAEs may provide rich data on the causal factors linked to MAEs, it is the least accurate method to measure MAEs as compared

BMJ Paediatrics Open

to direct observation and chart review [15, 16]. Apart from that, the use of incident reports meant that major risk factors such as nurses' workload could not be analysed [14].

Given that the prevalence of MAEs amongst neonates have been reported to be as high as 94.9% [17], a validated model incorporating an extensive list of potential risk factors associated with MAEs should assist all healthcare professionals involved in the medication use process to identify at-risk neonates in a clinical setting. To the best of our knowledge, a predictive risk score to identify neonates at risk of MAEs specifically is not yet available. Therefore, this study aims to develop and internally validate the multivariable prediction model for the identification of MAEs amongst neonates using a prospective direct observational study design, and to then externally validate the model using a different data set of neonates. The usability of the risk prediction model in terms of risk stratification will also be evaluated.

METHODS

This study will be conducted in accordance to recommendations by experts for the development and validation of the model [18, 19]. The reporting of this study protocol will be guided by the checklist for multivariable prediction models, namely the Transparent Reporting of a multivariable prediction model for Individual Prognosis Or Diagnosis (TRIPOD) [20].

- Study design

A direct observational study which will be conducted prospectively. The preparation and administration of medications by the nurses are directly observed to detect MAEs. This direct observation study will be disguised to reduce the Hawthorne effect on the observed nurses [15].

2	
3 4	150
5 6	151
7 8	152
9 10	153
11 12	154
13 14	155
15 16	100
10 17 18	156
19 20	157
21 22	158
23 24	159
25 26	160
27 28 29	161
30 31	162
32	102
33 34	163
35 36	164
37 38	165
39 40	166
41 42 43	167
44 45	168
46 47	169
48 49	170
50 51	171
52 53	
55 55	172
56 57	173
58 59	174
60	

150 The nurses will be informed that the observational study conducted aims to identify strategies to enhance the medication supply and distribution system and to understand the constraints of 151 the nurses' working environment and that it is not aimed to assess their personal practices [21]. 152 153

There are two stages in this study. The first stage is the identification of the predictor variables 154 while the second stage is the prospective direct observational study. A flowchart of the 155 156 development, validation and assessment of the risk prediction model is provided in figure 1.

158 **Study setting**

1

This study is a multicentre, nationwide study which will include Neonatal Intensive Care Units 160 161 (NICUs) of five public hospitals which were purposively chosen to reflect the various 162 categories of public hospitals in terms of specialities.

Study outcomes 164

The outcome of interest in this study is the occurrence of MAEs amongst neonates. MAE is 166 defined as any deviations during the preparation and administration of medications when 167 168 compared to the prescriber's medication order, hospital policies, or the manufacturer's 169 recommendations in the product leaflet [15]. This study intends to focus on the outcome of the system in place instead of the actions of the individual observed. Hence, this definition will be 170 employed as it does not focus on the individual's actions. 171

MAEs are further categorized into subcategories according to the stages of preparation and 173 174 administration (Table 1). This will allow us to understand the stages where MAEs occur

175 especially since m	edications for neonates	involve multiple	manipulations	[22]. Definitions of
------------------------	-------------------------	------------------	---------------	----------------------

the subcategories of MAEs were adopted from various literature [15, 22-24].

Table 1 Definitions of subcategory of MAEs

Subcategory of MAEs	Definitions
3-	Preparation
Administration without a medication order	Administration of a dose for a drug to a patient without a existing medication order.
Omission	The failure to administer a dose of the prescribed drug before the next scheduled dose.
Wrong dose	Administration of a dose that is at least 10% more or 100 less than the prescribed dose.
Wrong drug	Administration of a dose for a drug which is different from the prescribed drug.
Wrong dosage-form	Administration of a dose for the correct drug in a differe dosage form than the prescription.
Wrong time	A dose of drug is administered more than 60 minutes befor or after the scheduled prescribed dose and more than 1 minutes before or after for emergency prescriptions.
Wrong drug-preparation	Administration of a dose for a drug which has been incorrectly formulated or manipulated during the preparation of the dose.
Extra dose	Administration of an additional dose of the prescribed dru such as the administration of a dose after the prescription has been discontinued or administration of a dose more frequently than prescribed.
Deteriorated drug	Administration of a dose for a drug that has expired or whe the dosage form of the drug administered has been physical or chemically compromised.
	Administration
Wrong route	A dose of the correct drug is administered at a site that wa not prescribed.

2 3	
4	
5	
6	
7	
8 9	
, 10	
11	
12	
13	
14 15	179
15 16	
17	180
18	
19	181
20	
21 22	182
22	
24	183
25	
26	184
27 28	
28 29	185
30	
31	186
32	407
33	187
34 35	188
36	100
37	189
38	109
39	190
40 41	150
42	191
43	191
44	192
45	
46 47	193
47 48	
49	194
50	
51	195
52	
53 54	196
55	
56	197
57	
58 59	198
59 60	

Wrong patient	Administration of a dose for the correct drug to a different patient.
Incompatibility	Administration of two or more incompatible medications concurrently in the same line without flushing in between the administrations of these medications.
Wrong rate of administration	A dose of drug is administered more than $\pm 15\%$ of the recommended infusion time.

Error identification will be independently performed by the two raters who are blinded to the observations collected during data collection. Disagreements between the raters will be discussed with the research team for consensus.

Data collection 184

The observers were trained in the direct observation method of data collection as described by 186 Barker and McConnell [25]. Observers were trained by observing and performing practical 187 188 exercises on the direct observation technique. They are required to complete and pass a written 189 examination consisting of video simulations of drug preparation and administration by scoring 190 at least 80%, after which they are able to conduct the observations by themselves. Observers 191 will then perform pilot observations for three days in the ward to familiarize themselves with the procedures in the ward and to reduce the Hawthorne effect. To ensure uniform 192 193 understanding of the data collection procedures, all pilot observations will be discussed with the research team. However, these pilot observations will not be used as part of the data for this 194 195 study.

197 Written consent will be obtained from the nurses prior to data collection. Prior to the 198 observation of the drug preparation and administration, data such as demographic (e.g. birth

BMJ Paediatrics Open

weight, gender, length of stay), clinical (e.g. ventilation, diagnosis) and medication related information (e.g. name of medication prescribed, dose, frequency) will be collected using a predesigned data collection form.

The observer will closely shadow the nurses who has consented to the participation in this study throughout the medication preparation and administration round. During the observation, data related to the preparation of the medication (e.g. details of reconstitution and/or dilution such as the time of preparation, expiry, solvent, diluent), administration of the medication (e.g. time, rate, route, compatibility) and other procedures (e.g. labelling, double checking of medication administered, interruption and/or distraction) will be recorded. For ethical reasons, the observers will intervene in a non-judgemental manner if a potentially harmful error is about to reach a patient. However, this error will be included in the dataset as it is assumed that this error will reach the patient if it is not intervened by the observer.

After each round of observation, the observer will compare his/her notes with the prescriber's medication order, hospital policies, manufacturer's recommendations in the product leaflet and data published in literature to detect errors. Demographics of the nurse (e.g. years of working experience, level of education) responsible for the preparation and administration of medications will also be recorded. The clinical pharmacist at the study site will observe 10% of randomly selected drug preparations and administrations to ensure the validity and accuracy of the data collected by the observers.

Eligibility criteria

Medications prepared and administered by nurses for all routes of administrations will be included, while excluded medication administrations are (1) those administered by parents, (2) enteral feedings, parenteral nutrition and blood-derived products, (3) omission of medication administration because patient is not present in the ward during medication administration rounds or due to clinical reasons such as those lack of intravenous access or contraindications, and (4) rectal administrations, medical gases and dietary supplements. The same inclusion and exclusion criteria will be applied to the validation cohort.

231 Data analysis

233 Predictor variables

In order to develop a comprehensive method for identifying neonates at risk of MAEs, a total of 13 candidate predictor variables were identified through the following sources: (1) an extensive systematic review conducted to evaluate the available literature on the factors associated with MAEs amongst neonates [17] (2) national data containing information on the causes of MAEs amongst neonates, extracted from the Medication Error Reporting System (MERS) through the Pharmaceutical Services Programme, Ministry of Health Malaysia; and (3) expert panel consisting of one paediatrician, one clinical pharmacist with experience in the NICU and one senior nurse with an advanced diploma in Neonatology. The expert panel was established to review the predictor variables gathered from literature review and to identify other important predictor variables based on their clinical experience. Based on the systematic review, MERS and the expert panel, the identified candidate predictor variables are categorized and defined in table 2.

³ 247

Candidate predictor	Definition	Variable type	Sources
	Administration related variables		
Route of administration	Route of administration for the medication administered to patient (ie. oral, parenteral)	Categorical	SR
Complexity of the medication preparation	 One step such as withdrawal of required dose from a ready-to-use preparation Two step such as reconstitution of a drug which is then followed by the withdrawal of the required dose Three step such as reconstitution of a drug which is then followed by the withdrawal of the required dose and rug which is then followed by the withdrawal of the required dose and finally further dilution of the dose before administration 	Categorical	SR
	Working environment related variable	25	
Nurse to patient ratio	Nurse to patient ratio reflects the workload of a nurse	Continuous	MERS
Number of shifts in a day	Number of shifts a nurse is working within 24 hours	Continuous	MERS
Number of medications administered	Number of medications administered by the nurse at a specific scheduled drug round	Continuous	MERS
Time of administration	The time when the nurse prepare and administer the medications (ie. during office hours, after office hours)	Categorical	Expert panel
	Patient related variables	2/	
Types of ventilation	Administration of ventilatory support with / without using an invasive artificial airway such as non-invasive ventilation and invasive ventilation	Categorical	SR
Birth weight	The body weight of the neonate at birth. Classification of prematurity based on the birth weight: extremely low birth weight (< 1000gm), very low birth	Categorical	SR

		weight (< 1500gm) and low birth weight (< 2500gm)		
		Individual related variables		
	Years of experience	Number of years working as a nurse at study site	Continuous	Expert panel
	Level of education	Educational level of the nurse	Categorical	SR
	Double checking	The medication prepared for administration is counterchecked by another individual	Categorical	Expert panel
	Labelling	Medication prepared and administered is labelled according to local policies	Categorical	MERS & expert panel
	Interruptions and distractions	Stimuli which disrupt the nurses during the preparation and administration of the medications	Categorical	SR, MERS & expert panel
249	$\overline{\text{MERS}} = \text{medication e}$	error reporting system, SR = systematic rev	view	
250				
251	Missing data			
252				
253	Although we do not ex	spect our predictors to have a considerable	amount of missing	g data, some
254	will inevitably occur.	Hence, strategies to deal with missing data	a will be determin	ed based on
255	the predictors. Predict	tors with more than 20% missing data wi	ll be excluded [2	6]. Multiple
256	imputations by chaine	ed equations will be performed to impute	missing values fo	or predictors
257	with data missing at ra	ndom. For each predictor variable, five mu	ltiple imputation	datasets will
258	be created to obtain	an overall estimate as recommended by	Rubin and Schen	ker [27]. A
259	sensitivity analysis us	ing the pattern-mixture model approach wi	ill then be employ	ed to ensure
260	that the data is not mis	ssing at random [28].		
261				

262 Model development

The categorization of selected predictor variables into groups will be avoided to minimize the loss of potentially predictive information [29]. To ensure that there are no outliers, boxplots and descriptive statistics will be employed to examine continuous variables. Correction to the values obtained will be done if possible, or otherwise these values will be set to missing.

A univariate analysis will then be conducted to identify the variables significantly associated with the occurrence of a MAE [30]. Variables with p < .25 will be considered for inclusion into the multivariable model. A higher significance value is used to overcome a drawback of univariate analysis where during univariate analysis, individual variables that are weakly associated with the outcome are overlooked although they may contribute significantly when combined [30].

The predictor variables will then undergo multivariable logistic regression. Categories with limited data will be combined to meet the assumptions of regression. Backward stepwise selection will be used as it is preferred method in selecting the predictors to be included in the model as compared to forward stepwise selection which has been found to result in a model where potentially meaningful predictors may have been erroneously trimmed and that may be difficult to reproduce [31]. Variables will be removed or retained in the model according to its statistical significance. Statistical significance of p < 0.20 will be conservatively used for inclusion instead of a small significance level (e.g. p < 0.05) to prevent the omission of important predictor variables and removing less significant variables that may be practically and clinically relevant [30]. Overfitting models may occur regardless of the choice of a smaller or larger significance value, especially if a smaller dataset is used. Overfitting models are

models which are too specific to the development sample but are not generalizable in new but similar individuals. Therefore, we will employ the least absolute shrinkage and selection operator (LASSO) to reduce overfitting during the model building process [31, 32]. In addition, subsequent internal validation may also provide insight on the model being unstable or overfitted [33]. Multicollinearity will also be assessed using the variance inflation factor to identify predictor variables who have strong correlation with each other [34]. We will then explore the interactions between variables in the model by adding a new term to the model when assessing interactions for each two predictors. The interaction effects resulting from the combination of predictors is determined by the coefficient of this new term. 70.

Model performance

The model's performance will be evaluated by its calibration and discrimination [35]. The discriminatory ability of the model which is the ability of the model to differentiate between patients at risk of MAE and patients who are not at risk, will be assessed using the area under the receiver operating characteristic (ROC) curve. Calibration is an assessment of the agreement between observed outcomes in the data and predicted outcomes of the model. It will be assessed graphically through the inspection of calibration plots and the Hosmer-Lemeshow test [36].

Model validation

Internal validation of the prediction model will be assessed using the bootstrapping re-sampling technique to ensure that the prediction models are reproducible. This will provide insight into the model potentially being too optimistic or overfitted [37]. Bootstrap samples utilizing at

Page 17 of 22

1

BMJ Paediatrics Open

2		
3 4	312	least 500 bootstrap resampling procedures will be drawn. The difference in the discrimination
5 6	313	and calibration between each bootstrap model and the original model developed will be
7 8 9	314	averaged to adjust for optimism [32]. Bootstrapping also provides a shrinkage factor which
10 11	315	allow the adjustment of the estimated regression coefficients in the final model overfitting. A
12 13	316	global shrinkage factor of greater than 0.9 is desired [38].
14 15 16	317	
17 18	318	Model presentation
19 20	319	
21 22 23	320	The final model will be presented for both the derivation and validation samples. As predictions
24 25	321	are the main interest, the full prediction model which consist of the regression coefficients and
26 27	322	the model intercept will be published. Various modes of presentation formats such as a
28 29 30	323	simplified scoring tool or web-based electronic risk calculators will be considered.
31 32	324	
33 34	325	Study progress
35 36 37	326	
38 39	327	The first stage of the study, which is the identification of the predictor variables while the has
40 41	328	been completed while the second stage which is the prospective direct observational study, is
42 43 44	329	in progress.
45 46	330	
47 48	331	Sample size
49 50	332	
51 52 53	333	Sample size calculations following the four criterions for binary outcomes recommended by
54 55	334	Riley et al are performed to minimize overfitting and to ensure that precise predictions of the
56 57	335	developed model [39]. We have specified the anticipated outcome proportion as 0.31 [40], a
58 59 60	336	total number of candidate predictors of 20, a global shrinkage factor of 0.9 and the anticipated

3 4	337	model performance as defined by Cox-Snell $R^2(R^2_{CS})$ as 0.15 [39]. Taking these criterions into		
5 6 7	338	considerations, the minimum sample size required to ensure all criterions are fulfilled is 1,097		
7 8 9	339	drug administrations.		
10 11	340			
12 13	341	Ethics and dissemination		
14 15 16	342			
10 17 18	343	This study protocol was approved by the Medical Research and Ethics Committee (MREC),		
19 20	344	Ministry of Health Malaysia, with the identification number of NMRR-21-1484-59494 (IIR).		
21 22 23	345	Findings from our study will be disseminated through presentations at scientific conferences		
23 24 25	346	and peer-reviewed publications.		
26 27	347			
28 29 30	348	Acknowledgements		
30 31 32	349	We would like to thank Dr Lee Khai Yin, Dr Nazedah Binti Ain @ Ibrahim and Thun Yen		
33 34	350	Kheng for their contribution in this study as the expert panel and the nurses for their		
35 36 37	351	participation in this study.		
37 38 39	352			
40 41	353	Contributors		
42 43	354	JHB, NMS, AA, NAMT and CMP conceptualised the study. JHB and ZS designed the		
44 45 46	355	statistical plan for this study, which was reviewed by all authors. JHB drafted the manuscript,		
47 48	356	which was reviewed by all authors. All authors read, contributed and approved the final version		
49 50	357	of the manuscript.		
51 52 53	358			
54 55	359	Funding		
56 57	360	This work was supported by the Fundamental Research Grants Scheme by the Ministry of		
58 59 60	361	Higher Education of Malaysia (FRGS/1/2022/SKK16/UK/02/7).		

1 2				
2 3 4	362			
5 6 7	363	Competing interests		
7 8 9	364	None declared.		
10 11	365			
12 13 14	366	Patient and public involvement		
15 16	367			
17 18	368	Patients or the public were not involved in the design, or conduct, or reporting, or dissemination		
19 20 21	369	plans of our research.		
21 22 23	370			
24 25	371	Patient consent for publication		
26 27 28	372	Not applicable.		
28 29 30	373			
31 32	374	Ethics approval		
33 34	375	This study received ethics approval from the Medical Research and Ethics Committee		
35 36 37	376	(MREC), Ministry of Health Malaysia (NMRR-21-1484-59494 (IIR). Participants provided		
38 39	377	written informed consent to be observed in this study.		
40 41	378	Provenance and peer review		
42 43	379	Provenance and peer review		
44 45 46	380	Not commissioned; externally peer reviewed.		
47 48	381			
49 50	382	Data availability statement		
51 52 53	383	Data sharing is not applicable since no datasets were generated or analysed in this study.		
54 55	384			
56 57 58 59 60	385	Open access		

2	
3	386
4 5	
6	387
7	
8	388
9	
10 11	389
12	
13	390
14	201
15 16	391
17	392
18	392
19	393
20	555
21 22	394
22	
24	395
25	
26	396
27 28	
29	397
30	
31	398
32	
33 34	399
35	
36	400
37	401
38	401
39 40	402
41	402
42	403
43	404
44 45	405
46	400
47	407
48	408
49 50	410
50 51	410
52	412
53	412
54	413
55 56	414
50 57	415
58	410
59	417
60	410

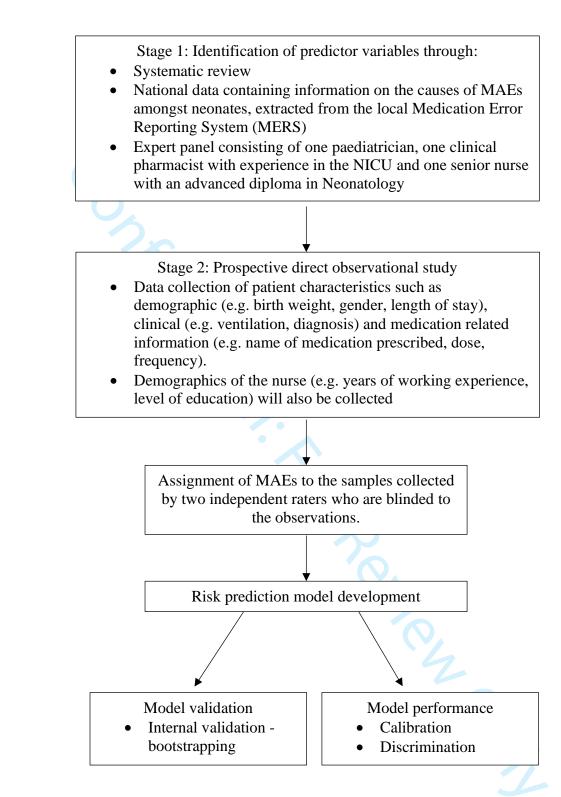
1

386 This is an open access article distributed in accordance with the Creative Commons Attribution 387 Non Commercial (CC BY-NC 4.0) license, which permits others to distribute, remix, adapt, build upon this work non-commercially, and license their derivative works on different terms, 388 provided the original work is properly cited, appropriate credit is given, any changes made 389 indicated, and the use is non-commercial. See: http://creativecommons.org/licenses/by-nc/4.0/. 390

392 **ORCID** iDs

- Josephine Henry Basil http://orcid.org/0000-0002-2447-7220 393
- 394 Chandini Menon Premakumar http://orcid.org/0000-0001-6140-5069
- Adliah Mhd Ali http://orcid.org/0000-0003-1306-8330 395
- Nurul Ain Mohd Tahir http://orcid.org/0000-0003-0353-4799 396
- Zamtira Seman http://orcid.org/0000-0002-1044-1876 397
- 398 Noraida Mohamed Shah http://orcid.org/0000-0002-2509-4213
- 399

400 References


402 Roughead EE, Semple SJ, Rosenfeld E. The extent of medication errors and adverse 1. 403 drug reactions throughout the patient journey in acute care in Australia. Int J Evid Based 404 Healthc. 2016;14(3):113-22.

- Elliott RA, Camacho E, Jankovic D, et al. Economic analysis of the prevalence and 405 2. 406 clinical and economic burden of medication error in England. BMJ Qual Saf. 2021;30(2):96-407 105.
- 3. 408 Cousins DH, Gerrett D, Warner B. A review of medication incidents reported to the 409 National Reporting and Learning System in England and Wales over 6 years (2005-2010). Br J 410 *Clin Pharmacol.* 2012;74(4):597-604.
- 411 4. Cousins DH, Dewsbury C, Matthew L, et al. NPSA Safety in doses: medication safety 412 incidents in the NHS: the fourth report of the patient safety observatory. London.2007. 413 5. Walsh EK, Hansen CR, Sahm LJ, et al. Economic impact of medication error: a
- systematic review. Pharmacoepidemiol Drug Saf. 2017;26(5):481-97. 414
- Kale A, Keohane CA, Maviglia S, et al. Adverse drug events caused by serious 415 6. medication administration errors. BMJ Qual Saf. 2012;21(11):933-8. 416
- Krzyzaniak N, Bajorek B. Medication safety in neonatal care: a review of medication 417 7. errors among neonates. Ther Adv Drug Saf. 2016;7(3):102-19. 418

Page 21 of 22

1					
2 3	410	9 Kuen II. Lo. L. Compoon M. et al. Medication reconciliation during transitions of care			
4	419 420	 Kwan JL, Lo L, Sampson M, et al. Medication reconciliation during transitions of care as a patient safety strategy: a systematic review. Ann Intern Med. 2013;158(5 Pt 2):397-403 			
5 6	421	9. Nguyen TL, Leguelinel-Blache G, Kinowski JM, et al. Improving medication safety:			
0 7	422	Development and impact of a multivariate model-based strategy to target high-risk patients.			
8	423	<i>PLoS One</i> . 2017;12(2):e0171995.			
9	424	10. Ebbens MM, Laar SAV, Wesselink EJ, et al. Prospective Validation of a Risk Prediction			
10 11	425	Model to Identify High-Risk Patients for Medication Errors at Hospital Admission. Ann			
12	426	Pharmacother. 2018;52(12):1211-17.			
13	427	11. Fung L, Huynh T, Brush T, et al. A Correlation of a Medication-Focused Risk Score to			
14	428	Medication Errors at Discharge. J Clin Pharmacol. 2020;60(11):1416-23.			
15 16	429	12. Bonnerup DK, Lisby M, Saedder EA, et al. Risk of prescribing errors in acutely			
17	430	admitted patients: a pilot study. Int J Clin Pharm. 2016;38(5):1157-63.			
18	431	13. Saedder EA, Lisby M, Nielsen LP, et al. Detection of Patients at High Risk of			
19	432	Medication Errors: Development and Validation of an Algorithm. Basic Clin Pharmacol			
20 21	433	<i>Toxicol</i> . 2016;118(2):143-9.			
22	434	14. Kang MJ, Jin Y, Jin T, et al. Automated Medication Error Risk Assessment System			
23	435	(Auto-MERAS). J Nurs Care Qual. 2018;33(1):86-93.			
24	436	15. Allan EL, Barker KN. Fundamentals of medication error research. <i>Am J Hosp Pharm</i> .			
25 26	437	1990;47(3):555-71.			
27	438	16. Meyer-Massetti C, Cheng CM, Schwappach DL, et al. Systematic review of			
28	439	medication safety assessment methods. Am J Health Syst Pharm. 2011;68(3):227-40.			
29	440	17. Henry Basil J, Premakumar CM, Mhd Ali A, et al. Prevalence, Causes and Severity of			
30 31	441	Medication Administration Errors in the Neonatal Intensive Care Unit: A Systematic Review			
32	442	and Meta-Analysis. Drug Saf. 2022.			
33	443	18. Royston P, Moons KG, Altman DG, et al. Prognosis and prognostic research:			
34	444	Developing a prognostic model. <i>BMJ</i> . 2009;338:b604.			
35 36	445	19. Steyerberg EW, Vergouwe Y. Towards better clinical prediction models: seven steps			
37	446	for development and an ABCD for validation. <i>Eur Heart J</i> . 2014;35(29):1925-31.			
38	447	20. Collins GS, Reitsma JB, Altman DG, et al. Transparent reporting of a multivariable			
39	448	prediction model for individual prognosis or diagnosis (TRIPOD): the TRIPOD statement.			
40 41	449	BMJ. 2015;350:g7594.			
42	450 451	21. van der Veen W, van den Bemt P, Wouters H, et al. Association between workarounds and medication administration errors in bar-code-assisted medication			
43	451 452				
44	452 453	administration in hospitals. <i>J Am Med Inform Assoc</i> . 2018;25(4):385-92. 22. McLeod MC, Barber N, Franklin BD. Methodological variations and their effects on			
45 46	455 454	reported medication administration error rates. <i>BMJ Qual Saf</i> . 2013;22(4):278-89.			
47	455	23. Chedoe I, Molendijk H, Hospes W, et al. The effect of a multifaceted educational			
48	456	intervention on medication preparation and administration errors in neonatal intensive			
49 50	457	care. Arch Dis Child Fetal Neonatal Ed. 2012;97(6):F449-55.			
50 51	458	24. ASHP guidelines on preventing medication errors in hospitals. Am J Hosp Pharm.			
52	459	1993;50(2):305-14.			
53	460	25. Barker KN, McConnell WE. The problems of detecting medication errors in hospitals.			
54 55	461	Am J Hosp Pharm. 1962;19:360-9.			
55 56	462	26. Parekh N, Ali K, Davies JG, et al. Medication-related harm in older adults following			
57	463	hospital discharge: development and validation of a prediction tool. <i>BMJ Qual Saf</i> .			
58	464	2020;29(2):142-53.			
59 60					
00					

 465 27. Rubin DB, Schenker N. Multiple imputation in health-care databases: an overview 466 and some applications. <i>Stat Med.</i> 1991;10(4):585-98. 467 28. Leurent B, Gomes MJ, Faria R, et al. Sensitivity Analysis for Not-at-Random Missing Data in Trial-Based Cost-Effectiveness Analysis: A Tutorial. <i>Pharmacoeconomics.</i> 2018;36(8):889-901. 470 29. Steyenberg EW. Clinical Prediction Models. A Practical Approach to Development, Validation and Updating. 1st edition ed. Berline: Springer; 2009. 473 30. Hosmer DW, Lemeshow S, Sturdivant RX. Applied logistic regression. New York: John 474 31. Grant SW, Collins GS, Nashef SAM. Statistical Primer: developing and validating a risk 475 prediction model. <i>Eur J Cardiothorac Surg.</i> 2018;54(2):203-08. 476 32. Steyerberg EW. Clinical Prediction Models. 2nd ed ed: Springer Nature Switzerland; 477 2019. 478 33. Steyerberg EW, Eljkemans MJ, Harrell FE, Jr., et al. Prognostic modeling with logistic 479 regression analysis: in search of a sensible strategy in small data sets. <i>Med Decis Making.</i> 2001;21(1):45-56. 481 34. Vatcheva KP, Lee M, McCormick JB, et al. Multicollinearity in Regression Analyses 482 Conducted in Epidemiologic Studies. <i>Epidemiology Sunnyvale</i>. 2016;6(2). 483 35. Alba AC, Agoritsas T, Walsh M, et al. Discrimination and Calibration of Clinical 484 475 A. Stateverg EW, Vickers AJ, Cook NR, et al. Assessing the performance of prediction 485 36. Steyerberg EW, Vickers AJ, Cook NR, et al. Assessing the performance of prediction 486 30. Steyerberg EW, Vickers AJ, Cook NR, et al. Assessing the performance of prediction 487 488 36. Steyerberg EW, Vickers AJ, Cook NR, et al. Assessing the performance of prediction 488 36. Steyerberg EW, Vickers AJ, Cook NR, et al. Assessing t	1		
 Houn DJ, Schmer PF, Muppe Implant PL and a Sate Sate Sate Sate Sate Sate Sate Sa	2 3	465	27 Dubie DD. Cohombon N. Multiple immutation in boolth and databases on even inve
 Leurent B, Gomes M, Faria R, et al. Sensitivity Analysis for Not-at-Random Missing Data in Trial-Based Cost-Effectiveness Analysis: A Tutorial. <i>Pharmacoeconomics</i>. Steyerberg EW. Clinical Prediction Models. A Practical Approach to Development, Validation and Updating. 1st edition ed. Berline: Springer; 2009. Bosen DW, Lemeshow S, Sturdivant RX. Applied logistic regression. New York: John Wiley & Sons, Incorporate;; 2013. Grant SW, Collins GS, Nashef SAM. Statistical Primer: developing and validating a risk prediction model. <i>Eur J Cardiothorac Surg</i>. 2018;54(2):203-08. Steyerberg EW. Clinical Prediction Models. 2nd ed ed: Springer Nature Switzerland; 2019. Steyerberg EW, Eijkemans MJ, Harrell FE, Jr., et al. Prognostic modeling with logistic regression analysis: in search of a sensible strategy in small data sets. <i>Med Decis Making</i>. 2001;21(1):45-56. A. Vatcheva KP, Lee M, McCormick JB, et al. Multicollinearity in Regression Analyses Conducted in Epidemiologic Studies. <i>Epidemiology (Sunnyvale)</i>. 2016;6(2). J. Alba AC, Agoritsas T, Walsh M, et al. Discrimination and Calibration of Clinical Prediction Models: Users' Guides to the Medical Literature. JAMA. 2017;318(14):1377-84. Steyerberg EW, Vickers AJ, Cook NR, et al. Assessing the performance of prediction models: a framework for traditional and novel measures. <i>Epidemiology</i>. 2010;21(1):128-38. Moons KG, Kengen AP, Woodward M, et al. Risk prediction models: 1. Development, internal validation, and assessing the incremental value of a new (bio)marker. <i>Heart</i>. 2012;98(9):683-90. B. Harrell FF, Jr. Regression modeling strategies with applications to linear models, logistic regression, and survival analysis. New York: Springer; 2001. p. 45-61. R. Barrell KF, Jr. Regression modeling strategies with applications to linear models, logistic regression, and survival analysis. New York: Springer; 2001. p. 45-61.<			
 dea Data in Trial-Based Cost-Effectiveness Analysis: A Tutorial. <i>Pharmacoeconomics</i>. 2018;36(8):889-901. Steyerberg EW. Clinical Prediction Models. A Practical Approach to Development, Validation and Updating. 1st edition ed. Berline: Springer; 2009. H2730. Hosmer DW, Lemeshow S, Sturdivant RX. Applied logistic regression. New York: John Wiley & Sons, Incorporate; 2013. Grant SW, Collins GS, Nashef SAM. Statistical Primer: developing and validating a risk prediction model. <i>Eur J Cardiothorac Surg</i>. 2018;54(2):203-08. Steyerberg EW. Clinical Prediction Models. 2nd ed ed: Springer Nature Switzerland; 2019. 33. Steyerberg EW. Clinical Prediction Models. 2nd ed ed: Springer Nature Switzerland; 2019. 2012;21(1):45-56. 2012;21(1):45-56. 2012;21(1):45-56. 2014: Yatcheva KP, Lee M, McCormick JB, et al. Multicollinearity in Regression Analyses Conducted in Epidemiologic Studies. <i>Epidemiology (Sunnyvole)</i>. 2016;6(2). 215. Alba AC, Agoritsas T, Walsh M, et al. Discrimination and Calibration of Clinical Prediction Models: Users' Guides to the Medical Literature. <i>JAMA</i>. 2017;318(14):1377-84. 216. Steyerberg EW, Vickers AJ, Cook NR, et al. Assessing the performance of prediction 217. Moons KG, Kengne AP, Woodward M, et al. Risk prediction models: 1 Development, 218. Harrell FE, Jr. Regression modeling strategies with applications to linear models, 10938. Harrell FE, JR. Regression modeling strategies with applications to linear models, 109510: regression, and survival analysis. New York: Springer; 2001. p. 45-61. 219. Riley RD, Snell KJ, Ensor J, et al. Minimum sample size for developing a multivariable prediction model: PART II - binary and time-to-event outcomes. Stat Med. 2			
 469 2018;36(8):889-901. 70 29. Steyerberg EW. Clinical Prediction Models. A Practical Approach to Development, 71 72 30. Hosmer DW, Lemeshow S, Sturdivant RX. Applied logistic regression. New York: John 72 30. Hosmer DW, Lemeshow S, Sturdivant RX. Applied logistic regression. New York: John 73 74 31. Grant SW, Collins GS, Nashef SAM. Statistical Primer: developing and validating a risk 74 75 76 77 78 74 78 78 75 78 76 78 77 79 78 79 79 70 70 7019. 70 7019. 70 7019. 70 7019. 70 7019. 71 70 7019. 72 7019. 73 7019. 74 78 78. Steyerberg EW. Clinical Prediction Models. 2nd ed: Springer Nature Switzerland; 70 7019. 78 78. Steyerberg EW. Elijkemans MJ, Harrell FE, Jr., et al. Prognostic modeling with logistic 79 regression analysis: in search of a sensible strategy in small data sets. <i>Med Decis Making</i>. 2001;21(1):45-56. 70 800;21(1):45-56. 71 70 701;21(1):45-56. 72 81 79 700;21(1):45-56. 73 81 70 700;21(1):42-56. 74 83 70. Moons KG, Kagne XP, Woodward M, et al. Nuscensing the performance of prediction models: User's Guides to the Medical Literature. JAMA. 2017;318(14):1377-84. 74 78 70 700;712(1):128-38. 73 70 7000;712(1):128-38. 74 70 7000;712(98(9):683-90. 75 81/29(9):683-90. 76 712/298(9):683-90. 77 7000;712(98(9):683-90. 78 70 7000;712(98(12);71276-96. 79 700;72(98(11);71276-96. 79 700;72(98(12);71276-96. 79 700;72(11);71276-96. 79 80 70, Rapital prediction models: PART II - binary and time-to-event outcomes. Stat Med. 2019;38(7):1276-96. 79 7009;50(1);68-72. 79 7			
 Steverberg EW. Clinical Prediction Models. A Practical Approach to Development, Validation and Updating. 1st edition ed. Berline: Springer, 2009. Grant SW, Collins GS, Nashef SAM. Statistical Primer: developing and validating a risk prediction model. <i>Eur J Cardiothorac Surg</i>. 2018;54(2):203-08. Steverberg EW. Clinical Prediction Models. 2nd ed ed: Springer Nature Switzerland; 2019. Steverberg EW. Eljkemans MJ, Harrell FE, Jr., et al. Prognostic modeling with logistic regression analysis: in search of a sensible strategy in small data sets. <i>Med Decis Making</i>. 2001;21(1):45-56. Atba AC, Agoritsas T, Walsh M, et al. Discrimination and Calibration of Clinical Prediction Models: Users' Guides to the Medical Literature. <i>JAMA</i>. 2017;318(4):1377-84. Steverberg EW, Vickers AJ, Cook NR, et al. Assessing the performance of prediction models: a framework for traditional and novel measures. <i>Epidemiology</i>. 2010;21(1):128-38. Moons KG, Kengne AP, Woodward M, et al. Risk prediction models: 1. Development, internal validation, and assessing the incremental value of a new (bio)marker. <i>Heart</i>. 2012;98(9):683-90. Rier RD, Snell KJ, Ensor J, et al. Minimum sample size for developing a multivariable prediction model: PART II - binary and time-to-event outcomes. <i>Stat Med</i>. 2019;38(7):1276- 96. Ria Large RD, Snell KJ, Ensor J, et al. Aquality assurance study on the administration of medication by nurses in a neonatal intensive care unit. <i>Singapore Med J</i>. 2009;50(1):68-72. 			
 Arto 25. Stepenberg EW. Clinical Prediction Models. A Practical Approach to Development, Validation and Updating. 1st edition ed. Berline: Springer; 2009. Hosmer DW, Lemeshow S, Sturdivant RX. Applied logistic regression. New York: John Wiley & Sons, Incorporate; 2013. Grant SW, Collins GS, Nashef SAM. Statistical Primer: developing and validating a risk prediction model. <i>Eur J Cardiothorac Surg</i>. 2018;54(2):203-08. Steyerberg EW. Clinical Prediction Models. 2nd ed ed: Springer Nature Switzerland; 2019. Steyerberg EW. Clinical Prediction Models. 2nd ed ed: Springer Nature Switzerland; 2019. Steyerberg EW. Clinical Prediction Models. 2nd ed ed: Springer Nature Switzerland; 2012;21(1):45-56. Vatcheva KP, Lee M, McCormick JB, et al. Multicollinearity in Regression Analyses Conducted in Epidemiologic Studies. <i>Epidemiology (Sunnyvale)</i>. 2016;6(2). S. Alba AC, Agoritas T, Walsh M, et al. Discrimination and Calibration of Clinical Prediction Models: Users' Guides to the Medical Literature. <i>AMA</i>. 2017;318(14):1377-84. Steyerberg EW, Vickers AJ, Cook NR, et al. Assessing the performance of prediction models: a framework for traditional and novel measures. <i>Epidemiology</i>. 2010;21(1):128-38. Moons KG, Kengne AP, Woodward M, et al. Risk prediction models: 1. Development, internal validation, and assessing the incremental value of a new (bio)marker. <i>Heart</i>. 2012;98(9):683-90. Harrell F, Jr. Regression modeling strategies with applications to linear models, logistic regression, and survival analysis. New York: Springer; 2001. p. 45-61. By. Riley RD, Snell KJ, Ensor J, et al. Aquality assurance study on the administration of medication by nurses in a neonatal intensive care unit. <i>Singapore Med J</i>. 2009;50(1):68-72. 		469	2018;36(8):889-901.
 Validation and Updating. 1st edition ed. Berline: Springer; 2009. Validation and Updating. 1st edition ed. Berline: Springer; 2009. Wiley & Sons, Incorporate;; 2013. Grant SW, Collins GS, Nashef SAM. Statistical Primer: developing and validating a risk prediction model. <i>Eur J Cardiothorac Surg</i>. 2018;54(2):203-08. Steyerberg EW. Clinical Prediction Models. 2nd ed ed: Springer Nature Switzerland; 2019. Steyerberg EW. Clinical Prediction Models. 2nd ed ed: Springer Nature Switzerland; 2001;21(1):45-56. Ata X. Vatcheva KP, Lee M, McCormick JB, et al. Multicollinearity in Regression Analyses Conducted in Epidemiologic Studies. <i>Epidemiology (Sunnyvale)</i>. 2016;6(2). Sonducted in Epidemiologic Studies. <i>Epidemiology (Sunnyvale)</i>. 2016;6(2). Ata AC, Agoritsas T, Walsh M, et al. Discrimination and Calibration of Clinical Prediction Models: Users' Guides to the Medical Literature. <i>JAMA</i>. 2017;318(14):1377-84. So. Steyerberg EW, Vickers AJ, Cook NR, et al. Assessing the performance of prediction models: a framework for traditional and novel measures. <i>Epidemiology</i>. 2010;21(1):128-38. Marca T, Moons KG, Kengne AP, Woodward M, et al. Risk prediction models: I. Development, internal validation, and assessing the incremental value of a new (bio)marker. <i>Heart</i>. 2012;98(9):683-90. Biley RD, Snell KI, Ensor J, et al. Minimum sample size for developing a multivariable prediction model: PART II - binary and time-to-event outcomes. <i>Stat Med</i>. 2019;38(7):1276-96. Bila Lope RJ, Boo NY, Rohana J, et al. Aquality assurance study on the administration of medication by nurses in a neonatal intensive care unit. <i>Singapore Med J</i>. 2009;50(1):68-72. 		470	29. Steyerberg EW. Clinical Prediction Models. A Practical Approach to Development,
 Hosmer DW, Lemeshow S, Sturdivant RX. Applied logistic regression. New York: John Wiley & Sons, Incorporate.; 2013. Grant SW, Collins GS, Nashef SAM. Statistical Primer: developing and validating a risk prediction model. <i>Eur J Cardiothorac Surg</i>. 2018;54(2):203-08. Steyerberg EW, Clinical Prediction Models. 2nd ed ed: Springer Nature Switzerland; 2019. Steyerberg EW, Eijkemans MJ, Harrell FE, Jr., et al. Prognostic modeling with logistic regression analysis: in search of a sensible strategy in small data sets. <i>Med Decis Making</i>. 2001;21(1):45-56. Vatcheva KP, Lee M, McCormick JB, et al. Multicollinearity in Regression Analyses Conducted in Epidemiologic Studies. <i>Epidemiology (Sunnyvale)</i>. 2016;6(2). S. Alba AC, Agoritsas T, Walsh M, et al. Discrimination and Calibration of Clinical Prediction Models: Users' Guides to the Medical Literature. <i>JAMA</i>. 2017;318(14):1377-84. Steyerberg EW, Vickers AJ, Cook NR, et al. Assessing the performance of prediction models: a framework for traditional and novel measures. <i>Epidemiology</i>. 2010;21(1):128-38. T. Moons KG, Kengne AP, Woodward M, et al. Risk prediction models: I. Development, internal validation, and assessing the incremental value of a new (bio)marker. <i>Heart</i>. 2012;98(9):683-90. B. Harrell FE, Jr. Regression modeling strategies with applications to linear models, logistic regression, Alsurvial analysis. New York: Springer; 2001. p. 45-61. g. Riley RD, Snell KI, Ensor J, et al. Minimum sample size for developing a multivariable prediction model: PART II - binary and time-to-event outcomes. <i>Stat Med</i>. 2019;38(7):1276-96. Raja Lope RJ, Boo NY, Rohana J, et al. A quality assurance study on the administration of medication by nurses in a neonatal intensive c		471	Validation and Updating. 1st edition ed. Berline: Springer; 2009.
 474 31. Grant SW, Collins GS, Nashef SAM. Statistical Primer: developing and validating a risk prediction model. <i>Eur J Cardiothorac Surg</i>. 2018;54(2):203-08. 475 32. Steyerberg EW. Clinical Prediction Models. 2nd ed ed: Springer Nature Switzerland; 2019. 478 33. Steyerberg EW, Eijkemans MJ, Harrell FE, Jr., et al. Prognostic modeling with logistic regression analysis: in search of a sensible strategy in small data sets. <i>Med Decis Making</i>. 2001;21(1):45-56. 481 34. Vatcheva KP, Lee M, McCormick JB, et al. Multicollinearity in Regression Analyses Conducted in Epidemiologic Studies. <i>Epidemiology (Sunnyvale)</i>. 2016;6(2). 483 55. Alba AC, Agoritsas T, Walsh M, et al. Discrimination and Calibration of Clinical Prediction Models: Users' Guides to the Medical Literature. <i>JAMA</i>. 2017;318(14):1377-84. 485 36. Steyerberg EW, Vickers AJ, Cook NR, et al. Assessing the performance of prediction models: a framework for traditional and novel measures. <i>Epidemiology</i>. 2010;21(1):128-38. 487 37. Moons KG, Kengne AP, Woodward M, et al. Risk prediction models: a Development, internal validation, and assessing the incremental value of a new (bio)marker. <i>Heart</i>. 490 38. Harrell FE, Jr. Regression modeling strategies with applications to linear models, logistic regression, and survival analysis. New York: Springer; 2001. p. 45-61. 492 39. Riley RD, Snell KI, Ensor J, et al. Minimum sample size for developing a multivariable prediction model: PART II - binary and time-to-event outcomes. <i>Stat Med</i>. 2019;38(7):1276- 404 400. Raja Lope RJ, Boo NY, Rohana J, et al. A quality assurance study on the administration of medication by nurses in a neonatal intensive care unit. <i>Singapore Med J</i>. 2009;50(1):68-72. 	12	472	30. Hosmer DW, Lemeshow S, Sturdivant RX. Applied logistic regression. New York: John
 474 51. Grant Sty. Collins 52, Masket Start, Startsteam, Startsteam,	13	473	Wiley & Sons, Incorporate,; 2013.
 475 prediction model. <i>Eur J Cardiothorac Surg.</i> 2018;54(2):203-08. 476 32. Steyerberg EW. Clinical Prediction Models. 2nd ed ed: Springer Nature Switzerland; 477 2019. 478 33. Steyerberg EW, Eijkemans MJ, Harrell FE, Jr., et al. Prognostic modeling with logistic 479 regression analysis: in search of a sensible strategy in small data sets. <i>Med Decis Making.</i> 2001;21(1):45-56. 481 34. Vatcheva KP, Lee M, McCormick JB, et al. Multicollinearity in Regression Analyses Conducted in Epidemiologic Studies. <i>Epidemiology (Sunnyvale).</i> 2016;6(2). 483 35. Alba AC, Agoritsas T, Walsh M, et al. Discrimination and Calibration of Clinical 484 Prediction Models: User's Guides to the Medical Literature. <i>JAMA.</i> 2017;318(14):1377-84. 36. Steyerberg EW, Vickers AJ, Cook NR, et al. Assessing the performance of prediction models: a framework for traditional and novel measures. <i>Epidemiology.</i> 2010;21(1):128-38. 37. Moons KG, Kengne AP, Woodward M, et al. Risk prediction models: I. Development, internal validation, and assessing the incremental value of a new (bio)marker. <i>Heart.</i> 2012;98(9):683-90. 38. Harrell FE, Jr. Regression modeling strategies with applications to linear models, logistic regression, and survial analysis. New York: Springer; 2001. p. 45-61. 39. Riley RD, Snell KI, Ensor J, et al. Minimum sample size for developing a multivariable prediction model: PART II - binary and time-to-event outcomes. <i>Stat Med.</i> 2019;38(7):1276- 96. 40. Raja Lope RJ, Boo NY, Rohana J, et al. A quality assurance study on the administration of medication by nurses in a neonatal intensive care unit. <i>Singapore Med J.</i> 2009;50(1):68-72. 498 	14	474	31. Grant SW, Collins GS, Nashef SAM. Statistical Primer: developing and validating a risk
 Affending Steperberg EW. Clinical Prediction Models. 2nd ed ed: Springer Nature Switzerland; Affending Steperberg EW, Eijkemans MJ, Harrell FE, Jr., et al. Prognostic modeling with logistic regression analysis: in search of a sensible strategy in small data sets. <i>Med Decis Making</i>. 2001;21(1):45-56. Ali Vatcheva KP, Lee M, McCormick JB, et al. Multicollinearity in Regression Analyses Conducted in Epidemiologic Studies. <i>Epidemiology (Sunnyvale)</i>. 2016;6(2). S. Alba AC, Agoritsas T, Walsh M, et al. Discrimination and Calibration of Clinical Prediction Models: Users' Guides to the Medical Literature. <i>JAMA</i>. 2017;318(14):1377-84. S. Teyerberg EW, Vickers AJ, Cook NR, et al. Assessing the performance of prediction models: a framework for traditional and novel measures. <i>Epidemiology</i>. 2010;21(1):128-38. S. T. Moons KG, Kengne AP, Woodward M, et al. Risk prediction models: 1. Development, internal validation, and assessing the incremental value of a new (bio)marker. <i>Heart</i>. 2012;98(9):683-90. B. Harrell FE, Jr. Regression modeling strategies with applications to linear models, logistic regression, and survival analysis. New York: Springer; 2001, p. 45-61. Riley RD, Snell KI, Ensor J, et al. Minimum sample size for developing a multivariable prediction model: PART II - binary and time-to-event outcomes. <i>Stat Med</i>. 2019;38(7):1276-96. Raja Lope RJ, Boo NY, Rohana J, et al. A quality assurance study on the administration of medication by nurses in a neonatal intensive care unit. <i>Singapore Med J</i>. 2009;50(1):68-72. 			
 477 2019. 33. Steyerberg EW, Eijkemans MJ, Harrell FE, Jr., et al. Prognostic modeling with logistic regression analysis: in search of a sensible strategy in small data sets. <i>Med Decis Making</i>. 2001;21(1):45-56. 481 34. Vatcheva KP, Lee M, McCormick JB, et al. Multicollinearity in Regression Analyses Conducted in Epidemiologic Studies. <i>Epidemiology (Sunnyvole)</i>. 2016;6(2). 483 5. Alba AC, Agoritsas T, Walsh M, et al. Discrimination and Calibration of Clinical Prediction Models: Users' Guides to the Medical Literature. <i>JAMA</i>. 2017;318(14):1377-84. 36. Steyerberg EW, Vickers AJ, Cook NR, et al. Assessing the performance of prediction models: a framework for traditional and novel measures. <i>Epidemiology</i>. 2010;21(1):128-38. 37. Moons KG, Kengne AP, Woodward M, et al. Risk prediction models: I. Development. Internal validation, and assessing the incremental value of a new (bio)marker. <i>Heart</i>. 2012;98(9):683-90. 38. Harrell FE, Jr. Regression modeling strategies with applications to linear models, logistic regression, and survival analysis. New York: Springer; 2001. p. 45-61. 39. Riley RD, Snell KJ, Ensor J, et al. Minimum sample size for developing a multivariable prediction model: PART II - binary and time-to-event outcomes. <i>Stat Med</i>. 2019;38(7):1276- 949 96. 40. Raja Lope RJ, Boo NY, Rohana J, et al. A quality assurance study on the administration of medication by nurses in a neonatal intensive care unit. <i>Singapore Med J</i>. 2009;50(1):68-72. 			
 33. Steyerberg EW, Eijkemans MJ, Harrell FE, Jr., et al. Prognostic modeling with logistic regression analysis: in search of a sensible strategy in small data sets. <i>Med Decis Making</i>. 2001;21(1):45-56. 34. Vatcheva KP, Lee M, McCormick JB, et al. Multicollinearity in Regression Analyses Conducted in Epidemiologic Studies. <i>Epidemiology (Sunnyvale)</i>. 2016;6(2). 35. Alba AC, Agoritsas T, Walsh M, et al. Discrimination and Calibration of Clinical Prediction Models: Users' Guides to the Medical Literature. <i>JAMA</i>. 2017;318(14):1377-84. 36. Steyerberg EW, Vickers AJ, Cook NR, et al. Assessing the performance of prediction models: a framework for traditional and novel measures. <i>Epidemiology</i>. 2010;21(1):128-38. 37. Moons KG, Kengne AP, Woodward M, et al. Risk prediction models: I. Development, internal validation, and assessing the incremental value of a new (bio)marker. <i>Heart</i>. 2012;98(9):683-90. 38. Harrell FE, Jr. Regression modeling strategies with applications to linear models, logistic regression, and survival analysis. New York: Springer; 2001. p. 45-61. 39. Riley RD, Snell KI, Ensor J, et al. Minimum sample size for developing a multivariable prediction model: PART II - binary and time-to-event outcomes. <i>Stat Med</i>. 2019;38(7):1276- 96. 40. Raja Lope RJ, Boo NY, Rohana J, et al. A quality assurance study on the administration of medication by nurses in a neonatal intensive care unit. <i>Singapore Med J</i>. 2009;50(1):68-72. 			
 and by the provided and the pro			
 480 2001;21(1):45-56. 481 34. Vatcheva KP, Lee M, McCormick JB, et al. Multicollinearity in Regression Analyses 482 Conducted in Epidemiologi Studies. <i>Epidemiology (Sunnyvale)</i>. 2016;6(2). 483 35. Alba AC, Agoritsas T, Walsh M, et al. Discrimination and Calibration of Clinical 484 Prediction Models: Users' Guides to the Medical Literature. <i>JAMA</i>. 2017;318(14):1377-84. 485 36. Steyerberg EW, Vickers AJ, Cook NR, et al. Assessing the performance of prediction 486 models: a framework for traditional and novel measures. <i>Epidemiology</i>. 2010;21(1):128-38. 487 37. Moons KG, Kengne AP, Woodward M, et al. Risk prediction models: 1. Development, 488 internal validation, and assessing the incremental value of a new (bio)marker. <i>Heart</i>. 2012;98(9):683-90. 490 38. Harrell FE, Jr. Regression modeling strategies with applications to linear models, logistic regression, and survival analysis. New York: Springer; 2001, p. 45-61. 492 39. Riley RD, Snell KI, Ensor J, et al. Minimum sample size for developing a multivariable prediction model: PART II - binary and time-to-event outcomes. <i>Stat Med</i>. 2019;38(7):1276- 495 40. Raja Lope RJ, Boo NY, Rohana J, et al. A quality assurance study on the administration of medication by nurses in a neonatal intensive care unit. <i>Singapore Med J</i>. 2009;50(1):68-72. 	20		
 34. Vatcheva KP, Lee M, McCormick JB, et al. Multicollinearity in Regression Analyses Conducted in Epidemiologic Studies. <i>Epidemiology (Sunnyvale)</i>. 2016;6(2). 35. Alba AC, Agoritsas T, Walsh M, et al. Discrimination and Calibration of Clinical Prediction Models: Users' Guides to the Medical Literature. <i>JAMA</i>. 2017;318(14):1377-84. 36. Steyerberg EW, Vickers AJ, Cook NR, et al. Assessing the performance of prediction models: a framework for traditional and novel measures. <i>Epidemiology</i>. 2010;21(1):128-38. 37. Moons KG, Kengne AP, Woodward M, et al. Risk prediction models: I. Development, internal validation, and assessing the incremental value of a new (bio)marker. <i>Heart</i>. 2012;98(9):683-90. 38. Harrell FE, Jr. Regression modeling strategies with applications to linear models, logistic regression, and survival analysis. New York: Springer; 2001. p. 45-61. 39. Riley RD, Snell KI, Ensor J, et al. Minimum sample size for developing a multivariable prediction model: PART II - binary and time-to-event outcomes. <i>Stat Med</i>. 2019;38(7):1276- 96. 40. Raja Lope RJ, Boo NY, Rohana J, et al. A quality assurance study on the administration of medication by nurses in a neonatal intensive care unit. <i>Singapore Med J</i>. 2009;50(1):68-72. 	21		
 482 Conducted in Epidemiologic Studies. <i>Epidemiology (Sunnyvale)</i>. 2016;6(2). 35. Alba AC, Agoritsas T, Walsh M, et al. Discrimination and Calibration of Clinical Prediction Models: Users' Guides to the Medical Literature. <i>JAMA</i>. 2017;318(14):1377-84. 36. Steyerberg EW, Vickers AJ, Cook NR, et al. Assessing the performance of prediction models: a framework for traditional and novel measures. <i>Epidemiology</i>. 2010;21(1):128-38. 37. Moons KG, Kengne AP, Woodward M, et al. Risk prediction models: I. Development, internal validation, and assessing the incremental value of a new (bio)marker. <i>Heart</i>. 2012;98(9):683-90. 38. Harrell FE, Jr. Regression modeling strategies with applications to linear models, logistic regression, and survival analysis. New York: Springer; 2001. p. 45-61. 39. Riley RD, Snell KI, Ensor J, et al. Minimum sample size for developing a multivariable prediction model: PART II - binary and time-to-event outcomes. <i>Stat Med</i>. 2019;38(7):1276- 96. 40. Raja Lope RJ, Boo NY, Rohana J, et al. A quality assurance study on the administration of medication by nurses in a neonatal intensive care unit. <i>Singapore Med J</i>. 2009;50(1):68-72. 			
 483 483 484 485 36. Steyerberg EW, Vickers AJ, Cook NR, et al. Discrimination and Calibration of Clinical 484 485 36. Steyerberg EW, Vickers AJ, Cook NR, et al. Assessing the performance of prediction 486 487 37. Moons KG, Kengne AP, Woodward M, et al. Risk prediction models: I. Development, 488 487 37. Moons KG, Kengne AP, Woodward M, et al. Risk predictions to linear models, 489 489 38. Harrell FE, Jr. Regression modeling strategies with applications to linear models, 490 38. Harrell FE, Jr. Regression modeling strategies with applications to linear models, 10gistic regression, and survival analysis. New York: Springer; 2001. p. 45-61. 39. Riley RD, Snell KI, Ensor J, et al. Minimum sample size for developing a multivariable 493 400 41 401 401 402 402 403 403 404 404 405 400 404 406 400 401 402 401 403 403 403 404 404 405 405 400 404 406 401 406 403 403 404 406 404 406 406 407 408 408 409 409 409 400 400 401 401 402 403 403 404 404 405 405 406 406 407 408 408 409 409 409 400 400 400 400 401 401 403 403 404 404 405 405 404 406 406 407 408 408 409 409 409 409 400<td></td><td></td><td></td>			
 403 903 Prediction Models: Users' Guides to the Medical Literature. JAMA. 2017;318(14):1377-84. 36. Steyerberg EW, Vickers AJ, Cook NR, et al. Assessing the performance of prediction models: a framework for traditional and novel measures. <i>Epidemiology</i>. 2010;21(1):128-38. 37. Moons KG, Kengne AP, Woodward M, et al. Risk prediction models: I. Development, internal validation, and assessing the incremental value of a new (bio)marker. <i>Heart</i>. 2012;98(9):683-90. 38. Harrell FE, Jr. Regression modeling strategies with applications to linear models, logistic regression, and survival analysis. New York: Springer; 2001. p. 45-61. 39. Riley RD, Snell KI, Ensor J, et al. Minimum sample size for developing a multivariable prediction model: PART II - binary and time-to-event outcomes. <i>Stat Med</i>. 2019;38(7):1276- 96. 400. Raja Lope RJ, Boo NY, Rohana J, et al. A quality assurance study on the administration of medication by nurses in a neonatal intensive care unit. <i>Singapore Med J</i>. 2009;50(1):68-72. 498 			
 484 Prediction Models: Users Guides to the Medical Literature. <i>JANNA</i>. 2017;318(14):1377-84. 485 36. Steyerberg EW, Vickers AJ, Cook NR, et al. Assessing the performance of prediction models: a framework for traditional and novel measures. <i>Epidemiology</i>. 2010;21(1):128-38. 487 37. Moons KG, Kengne AP, Woodward M, et al. Risk prediction models: I. Development, internal validation, and assessing the incremental value of a new (bio)marker. <i>Heart</i>. 488 2012;98(9):683-90. 490 38. Harrell FE, Jr. Regression modeling strategies with applications to linear models, logistic regression, and survival analysis. New York: Springer; 2001. p. 45-61. 492 39. Riley RD, Snell KI, Ensor J, et al. Minimum sample size for developing a multivariable prediction model: PART II - binary and time-to-event outcomes. <i>Stat Med</i>. 2019;38(7):1276-96. 40. Raja Lope RJ, Boo NY, Rohana J, et al. A quality assurance study on the administration of medication by nurses in a neonatal intensive care unit. <i>Singapore Med J</i>. 2009;50(1):68-72. 498 			
 486 models: a framework for traditional and novel measures. <i>Epidemiology</i>. 2010;21(1):128-38. 37. Moons KG, Kengne AP, Woodward M, et al. Risk prediction models: I. Development, internal validation, and assessing the incremental value of a new (bio)marker. <i>Heart</i>. 2012;98(9):683-90. 38. Harrell FE, Jr. Regression modeling strategies with applications to linear models, logistic regression, and survival analysis. New York: Springer; 2001. p. 45-61. 492. 39. Riley RD, Snell KI, Ensor J, et al. Minimum sample size for developing a multivariable prediction model: PART II - binary and time-to-event outcomes. <i>Stat Med</i>. 2019;38(7):1276- 494. 40. Raja Lope RJ, Boo NY, Rohana J, et al. A quality assurance study on the administration of medication by nurses in a neonatal intensive care unit. <i>Singapore Med J</i>. 2009;50(1):68-72. 498 	27		
 487 37. Moons KG, Kengne AP, Woodward M, et al. Risk prediction models: I. Development, internal validation, and assessing the incremental value of a new (bio)marker. <i>Heart</i>. 2012;98(9):683-90. 490 38. Harrell FE, Jr. Regression modeling strategies with applications to linear models, logistic regression, and survival analysis. New York: Springer; 2001. p. 45-61. 492 39. Riley RD, Snell KI, Ensor J, et al. Minimum sample size for developing a multivariable prediction model: PART II - binary and time-to-event outcomes. <i>Stat Med</i>. 2019;38(7):1276- 96. 400. Raja Lope RJ, Boo NY, Rohana J, et al. A quality assurance study on the administration of medication by nurses in a neonatal intensive care unit. <i>Singapore Med J</i>. 2009;50(1):68-72. 	28		
 187 11 188 internal validation, and assessing the incremental value of a new (bio)marker. <i>Heart</i>. 2012;98(9):683-90. 2012;98(9):683-90. 2012 38. Harrell FE, Jr. Regression modeling strategies with applications to linear models, logistic regression, and survival analysis. New York: Springer; 2001. p. 45-61. 202 39. Riley RD, Snell KI, Ensor J, et al. Minimum sample size for developing a multivariable prediction model: PART II - binary and time-to-event outcomes. <i>Stat Med</i>. 2019;38(7):1276- 96. 40. Raja Lope RJ, Boo NY, Rohana J, et al. A quality assurance study on the administration of medication by nurses in a neonatal intensive care unit. <i>Singapore Med J</i>. 2009;50(1):68-72. 	29	486	models: a framework for traditional and novel measures. <i>Epidemiology</i> . 2010;21(1):128-38.
 488 Internal valuation, and assessing the incremental value of a new (bio)marker. <i>Heart</i>. 2012;98(9):683-90. 38. Harrell FE, Jr. Regression modeling strategies with applications to linear models, logistic regression, and survival analysis. New York: Springer; 2001. p. 45-61. 39. Riley RD, Snell KI, Ensor J, et al. Minimum sample size for developing a multivariable prediction model: PART II - binary and time-to-event outcomes. <i>Stat Med</i>. 2019;38(7):1276- 96. 40. Raja Lope RJ, Boo NY, Rohana J, et al. A quality assurance study on the administration of medication by nurses in a neonatal intensive care unit. <i>Singapore Med J</i>. 2009;50(1):68-72. 		487	37. Moons KG, Kengne AP, Woodward M, et al. Risk prediction models: I. Development,
 489 2012;98(9):683-90. 38. Harrell FE, Jr. Regression modeling strategies with applications to linear models, logistic regression, and survival analysis. New York: Springer; 2001. p. 45-61. 492 39. Riley RD, Snell KI, Ensor J, et al. Minimum sample size for developing a multivariable prediction model: PART II - binary and time-to-event outcomes. <i>Stat Med.</i> 2019;38(7):1276- 96. 40. Raja Lope RJ, Boo NY, Rohana J, et al. A quality assurance study on the administration of medication by nurses in a neonatal intensive care unit. <i>Singapore Med J.</i> 2009;50(1):68-72. 		488	internal validation, and assessing the incremental value of a new (bio)marker. <i>Heart</i> .
 490 38. Harrell FE, Jr. Regression modeling strategies with applications to linear models, logistic regression, and survival analysis. New York: Springer; 2001. p. 45-61. 39. Riley RD, Snell KI, Ensor J, et al. Minimum sample size for developing a multivariable prediction model: PART II - binary and time-to-event outcomes. <i>Stat Med</i>. 2019;38(7):1276- 96. 40. Raja Lope RJ, Boo NY, Rohana J, et al. A quality assurance study on the administration of medication by nurses in a neonatal intensive care unit. <i>Singapore Med J</i>. 2009;50(1):68-72. 		489	2012;98(9):683-90.
 491 logistic regression, and survival analysis. New York: Springer; 2001. p. 45-61. 492 39. Riley RD, Snell KI, Ensor J, et al. Minimum sample size for developing a multivariable prediction model: PART II - binary and time-to-event outcomes. <i>Stat Med.</i> 2019;38(7):1276- 96. 495 40. Raja Lope RJ, Boo NY, Rohana J, et al. A quality assurance study on the administration of medication by nurses in a neonatal intensive care unit. <i>Singapore Med J.</i> 2009;50(1):68-72. 498 499 400 <		490	38. Harrell FE, Jr. Regression modeling strategies with applications to linear models,
 39. Riley RD, Snell KI, Ensor J, et al. Minimum sample size for developing a multivariable prediction model: PART II - binary and time-to-event outcomes. <i>Stat Med</i>. 2019;38(7):1276-96. 40. Raja Lope RJ, Boo NY, Rohana J, et al. A quality assurance study on the administration of medication by nurses in a neonatal intensive care unit. <i>Singapore Med J</i>. 2009;50(1):68-72. 498 498 498 498 	35	491	
 493 prediction model: PART II - binary and time-to-event outcomes. <i>Stat Med.</i> 2019;38(7):1276- 494 96. 40. Raja Lope RJ, Boo NY, Rohana J, et al. A quality assurance study on the administration of medication by nurses in a neonatal intensive care unit. <i>Singapore Med J.</i> 2009;50(1):68-72. 498 <l< td=""><td>36</td><td></td><td></td></l<>	36		
39 494 96. 40 495 40. Raja Lope RJ, Boo NY, Rohana J, et al. A quality assurance study on the 41 496 administration of medication by nurses in a neonatal intensive care unit. Singapore Med J. 42 497 2009;50(1):68-72. 43 498 45	37		
 40 495 40. Raja Lope RJ, Boo NY, Rohana J, et al. A quality assurance study on the administration of medication by nurses in a neonatal intensive care unit. Singapore Med J. 497 2009;50(1):68-72. 498 498 498 50 51 52 53 54 55 56 57 58 59 			
41 496 administration of medication by nurses in a neonatal intensive care unit. Singapore Med J. 42 497 2009;50(1):68-72. 44 498 45 46 47 48 49 50 51 52 53 54 54 55 56 57 58 59			
42 497 2009;50(1):68-72. 44 498 45 46 47 48 49 50 51 52 53 54 54 55 56 57 58 59			
43 497 2009,50(1).08-72. 44 498 45 9 46 9 50 9 51 9			
41 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59	43		2009,50(1).08-72.
46 47 48 49 50 51 51 52 53 54 54 55 56 57 58 59	44	498	
51 52 53 54 55 56 57 58 59			
51 52 53 54 55 56 57 58 59	50		
53 54 55 56 57 58 59			
54 55 56 57 58 59			
55 56 57 58 59			
56 57 58 59			
57 58 59	56		
59			
	58		
	00		

Fig 1 Flowchart of risk prediction model development and validation of medication administration errors (MAEs) in neonates

Development and validation of a risk prediction model for medication administration errors amongst neonates in the neonatal intensive care unit: a study protocol

Journal:	BMJ Paediatrics Open
Manuscript ID	bmjpo-2022-001765.R1
Article Type:	Protocol
Date Submitted by the Author:	20-Jan-2023
Complete List of Authors:	Henry Basil, Josephine; Universiti Kebangsaan Malaysia, Centre for Quality Management of Medicines, Faculty of Pharmacy Premakumar, Chandini Menon; Universiti Kebangsaan Malaysia, Centre for Quality Management of Medicines, Faculty of Pharmacy Mhd Ali, Adliah; Universiti Kebangsaan Malaysia, Centre for Quality Management of Medicines, Faculty of Pharmacy Mohd Tahir, Nurul Ain; Universiti Kebangsaan Malaysia, Centre for Quality Management of Medicines, Faculty of Pharmacy Seman, Zamtira; Ministry of Health Malaysia, Sector for Biostatistics & Data Repository, National Institutes of Health Mohamed Shah, Noraida; Universiti Kebangsaan Malaysia, Centre for Quality Management of Medicines, Faculty of Pharmacy
Keywords:	Neonatology

SCHOLARONE[™] Manuscripts

I, the Submitting Author has the right to grant and does grant on behalf of all authors of the Work (as defined in the below author licence), an exclusive licence and/or a non-exclusive licence for contributions from authors who are: i) UK Crown employees; ii) where BMJ has agreed a CC-BY licence shall apply, and/or iii) in accordance with the terms applicable for US Federal Government officers or employees acting as part of their official duties; on a worldwide, perpetual, irrevocable, royalty-free basis to BMJ Publishing Group Ltd ("BMJ") its licensees and where the relevant Journal is co-owned by BMJ to the co-owners of the Journal, to publish the Work in this journal and any other BMJ products and to exploit all rights, as set out in our <u>licence</u>.

The Submitting Author accepts and understands that any supply made under these terms is made by BMJ to the Submitting Author unless you are acting as an employee on behalf of your employer or a postgraduate student of an affiliated institution which is paying any applicable article publishing charge ("APC") for Open Access articles. Where the Submitting Author wishes to make the Work available on an Open Access basis (and intends to pay the relevant APC), the terms of reuse of such Open Access shall be governed by a Creative Commons licence – details of these licences and which <u>Creative Commons</u> licence will apply to this Work are set out in our licence referred to above.

Other than as permitted in any relevant BMJ Author's Self Archiving Policies, I confirm this Work has not been accepted for publication elsewhere, is not being considered for publication elsewhere and does not duplicate material already published. I confirm all authors consent to publication of this Work and authorise the granting of this licence.

2 3 4	1	Development and validation of a risk prediction model for medication administration			
5 6 7	2	errors amongst neonates in the neonatal intensive care unit: a study protocol			
7 8 9	3				
10 11	4	Josephine Henry Basil ¹ , Chandini Menon Premakumar ¹ , Adliah Mhd Ali ¹ , Nurul Ain Moh			
12 13	5	Tahir ¹ , Zamtira Seman ² , Noraida Mohamed Shah* ¹			
14 15 16	6				
17 18	7	¹ Centre for Quality Management of Medicines, Faculty of Pharmacy, Universiti Kebangsaan			
19 20	8	Malaysia, Jalan Raja Muda Abdul Aziz, 50300 Kuala Lumpur, Malaysia.			
21 22 23	9	² Sector for Biostatistics & Data Repository, National Institutes of Health, Ministry of Health			
24 25	10	Malaysia, Shah Alam, Selangor			
26 27	11				
28 29 30	12 *Corresponding Author:				
31 32	13	Full name: Noraida Mohamed Shah			
33 34	14	Postal address: Centre for Quality Management of Medicines, Faculty of Pharmacy,			
35 36 37	15	Universiti Kebangsaan Malaysia, Jalan Raja Muda Abdul Aziz, 50300 Kuala Lumpur,			
37 38 39	16	Malaysia.			
40 41	17	E-mail addresses: noraida_mshah@ukm.edu.my			
42 43 44	18				
44 45 46	19	Co-authors:			
47 48	20	Co-authors: Full name: Josephine Henry Basil Department: Faculty of Pharmacy			
49 50	21 Full name: Josephine Henry Basil				
51 52 53	22	Department: Faculty of Pharmacy			
54 55	23	Institution: Universiti Kebangsaan Malaysia			
56 57	24	City: Kuala Lumpur			
58 59 60	₃₉ 25 Country: Malaysia				

2				
3 4	26	Full name: Dr. Chandini Menon Premakumar		
5 6	27 Department: Faculty of Pharmacy			
7 8	8 28 Institution: Universiti Kebangsaan Malaysia			
9 10 11	29	City: Kuala Lumpur		
12 13	30	Country: Malaysia		
14 15	31			
16 17	32	Full name: Dr. Adliah Mhd Ali		
18 19 20	33	Department: Faculty of Pharmacy		
20 21 22	34	Institution: Universiti Kebangsaan Malaysia		
23 24	35	City: Kuala Lumpur		
25 26	36	Country: Malaysia		
27 28 29	37			
30 31	38	Full name: Dr. Nurul Ain Mohd Tahir		
32 33	39	Department: Faculty of Pharmacy		
34 35	40	Institution: Universiti Kebangsaan Malaysia		
36 37 38	41	City: Kuala Lumpur		
39 40	42	Country: Malaysia		
41 42	43			
43 44	44	Full name: Zamtira Seman		
45 46 47	45	Department: Sector for Biostatistics & Data Repository		
48 49				
50 51	46	Institution: Ministry of Health Malaysia		
52 53	47	City: Shah Alam		
54 55	48	Country: Malaysia		
56 57	49			
58 59 60	50	Word count: 2421		
00				

51 ABSTRACT

53 Introduction

Medication administration errors (MAEs) are the most common type of medication error. Furthermore, they are more common amongst neonates as compared to adults. MAEs can result in severe patient harm, subsequently causing a significant economic burden to the healthcare system. Targeting and prioritising neonates at high risk of MAEs is crucial in reducing MAEs. To the best of our knowledge, there is no predictive risk score available for the identification of neonates at risk of MAEs. Therefore, this study aims to develop and validate a risk prediction model to identify neonates at risk of MAEs.

62 Methods and analysis

This is a prospective direct observational study that will be conducted in five neonatal intensive care units. A minimum sample size of 820 drug preparations and administrations will be observed. Data including patient characteristics, drug preparation- and administration-related information, and other procedures will be recorded. After each round of observation, the observers will compare his/her observations with the prescriber's medication order, hospital policies and manufacturer's recommendations to determine whether MAE has occurred. To ensure reliability, the error identification will be independently performed by two clinical pharmacists after the completion of data collection for all study sites. Any disagreements will be discussed with the research team for consensus. To reduce overfitting and improve the quality of risk predictions, we have pre-specified a priori the analytical plan i.e. prespecifying the candidate predictor variables, handling missing data and validation of the developed model. The model's performance will also be assessed. Finally, various modes of presentation formats such as a simplified scoring tool or web-based electronic risk calculators will be considered.

1		
2 3 4	76	
5 6	77	Ethics and dissemination
7 8 9	78	This study protocol was approved by the Medical Research and Ethics Committee, Ministry of
9 10 11	79	Health Malaysia (NMRR-21-1484-59494 [IIR]) on 24th January 2022 and the Medical Ethics
12 13	80	Committee, Universiti Kebangsaan Malaysia on 10th February 2022. Findings from our study
14 15	81	will be disseminated through presentations at scientific conferences and peer-reviewed
16 17 18	82	publications.
19 20	83	
21 22	84	What is already known on this topic
23 24 25	85	• The aetiology of MAEs is multifactorial and complex.
26 27	86	• It may be caused by unsafe acts such as slips and lapses, rule- and knowledge-based
28 29 87 mistal		mistakes, violations, and/or latent conditions such as an error-producing environment
30 31 32	88	due to decisions made by higher organisational levels.
33 34	89	• Non-adherence to policies, lack of knowledge, similar look-a-like and sound-a-alike
37 28 01 contributing to MAEs in populates		medications, lack of nurses and lack of training are amongst the many factors
		contributing to MAEs in neonates.
40 41	92	What this study adds
42 43	93	What this study adds
44 45 46	94	• We anticipate that the newly developed model can be used to identify neonates at risk
40 47 48	95	of MAEs, as well as generate estimates of future MAEs amongst them and the risk
49 50	96	factors commonly associated with MAEs.
51 52 53	97	
54 55	98	How this study might affect research, practice, or policy
56 57	99	• We hope that the information attained from this study will assist policymakers and
58 59 60	100	stakeholders to conduct timely assessments of MAEs. It can also guide the discussion
60		

<text><text><text><page-footer>

INTRODUCTION

Medication errors (MEs) may arise throughout the medication use process which consists of prescribing, transcribing, dispensing, administration, and monitoring [1]. Medication administration errors (MAEs) are the most commonly occurring error as compared to prescribing and dispensing, amounting to more than 50% of all MEs [2, 3]. Furthermore, MAEs are associated with the highest number of incidents resulting in death and severe harm than other stages of the medication use process. As a result, they contribute to significant economic burden from the utilisation of healthcare services [4, 5]. It is estimated that approximately 4,000 hospitalised patients are harmed by a total of six million medication doses administered, costing between USD25 and 35 million annually in the United States [6]. A systematic review of all types of MEs reported that the prevalence of MAEs amongst neonates ranged between 31% and 63% as compared to paediatric and adult patients which ranged between 12.8% to 73% and 14.6% to 41% respectively [7].

A key aspect of a successful intervention is targeting and prioritising patients at high risk of MEs to improve medication safety [8]. Several risk scores have been developed to identify patients at risk of MEs, either amongst hospitalized adults [9], at admission or during discharge [10, 11]. Others risk scores specifically identify patients at risk of prescribing errors [12, 13]. The Automated Medication Error Risk Assessment System (Auto-MERAS) [14] was the only developed and validated tool for the prediction of MAEs. However, it was developed and validated amongst hospitalised adults based on incident reports extracted from the local safety reporting system. Although the use of incident reports to measure MAEs may generate rich information on the causal factors linked to MAEs, it is the least accurate method to measure MAEs as compared to direct observation and chart review [15, 16]. Apart from that, the use of

incident reports meant that major risk factors such as nurses' workload could not be analysed[14].

Given that the prevalence of MAEs amongst neonates has been reported to be as high as 94.9% [17], a validated model incorporating an extensive list of potential risk factors associated with MAEs would facilitate the healthcare professionals involved in the medication use process to identify at-risk neonates in the neonatal intensive care unit (NICU). To the best of our knowledge, a predictive risk score to identify neonates at risk of MAEs specifically is not yet available. Therefore, this study aims to develop and internally validate a multivariable prediction model for the identification of MAEs amongst neonates using a prospective direct observational study design. The model will also be externally validate by using data from a different set of neonates. The feasibility of using the risk prediction model for risk stratification will also be evaluated.

142 METHODS

This study will be conducted in accordance with the recommendations for model development
and validation [18, 19]. The study protocol will reported based on the checklist for
multivariable prediction models, namely the Transparent Reporting of a multivariable
prediction model for Individual Prognosis Or Diagnosis (TRIPOD) [20].

149 Study design

54 150

A direct observational study for the development of the risk prediction model will be conducted
prospectively between April 2022 and April 2023. The subsequent development and validation

Page 9 of 28

Study setting

BMJ Paediatrics Open

of the model will be performed until April 2024. The preparation and administration of medications by the nurses are directly observed to detect MAEs. A flowchart of the development, validation and assessment of the risk prediction model is provided in Figure 1.

This national-level multicentre study will include the NICUs of five public hospitals. All hospitals under the Ministry of Health Malaysia (MOH) are classified as state hospitals, major specialist hospitals, minor specialist hospitals, or non-specialist hospitals. The subspeciality of neonatology is only available in the state and major specialist hospitals. There are five regions in Malaysia, i.e. Northern, Central, Southern, East Coast, and East Malaysia. One hospital was chosen from each of these regions. The five selected public hospitals consisting of two state hospitals and three major specialist hospitals were purposively chosen to include both categories of public hospitals providing neonatology subspecialty. The total bed capacity of the NICUs in these five public hospitals ranges from 16 to 38 beds. Y.C.

Study outcomes

In this study, the outcome of interest is the occurrence of MAEs amongst neonates. MAE can be defined as any deviations during the preparation and administration of medications when compared to the prescriber's medication order, hospital policies, or the manufacturer's recommendations in the product leaflet [21]. The main intention of this study is to focus on the impact of the outcomes on the system in place instead of the actions of the individual observed. Hence, the above-mentioned definition will be employed as it does not focus on the individual's actions.

1 2 3	178					
4 5 6 7 8 9 10 11 12 13 14 15 16 17 18	179	MAEs are further categorized into subcategories according to the stages of preparation and				
	180	administration (Table 1). This will provide a better understanding of the stages where MAEs				
	101	occur, especially since medication preparation for neonates involves multiple manipulations				
	181					
	182	[22]. The definitions of the subcategories of MAEs were adopted from various literature [15,				
	183	21, 23] and reviewed by an expert panel consisting of two academicians with at least 20 years				
	184	of experience and two pharmacists with at least 8 years of experience.				
19 20	185					
20 21 22 23 24 25 26	186	Table 1 Definitions of the subcategories of MAEs				
		Subcategory of MAEs	Definitions			
20 27 28			Preparation			
29 30 31		Administration without a medication order	Administration of a dose for a drug to a patient without an existing medication order.			
32 33 34 35 36 37 38		Omission	The failure to administer a dose of the prescribed drug before the next scheduled dose.			
		Wrong dose	Administration of a dose that is at least 10% more or 10% less than the prescribed dose.			
39 40 41		Wrong drug	Administration of a dose for a drug that is different from the prescribed drug.			
42 43 44		Wrong dosage-form	Administration of a dose for the correct drug in a different dosage form than the prescription.			
45 46 47 48 49 50 51 52 53		Wrong time	A dose of the drug is administered more than 60 minutes before or after the scheduled prescribed dose and more than 15 minutes before or after for emergency prescriptions.			
		Wrong drug-preparation	Administration of a dose for a drug that has been incorrectly formulated or manipulated during the preparation of the dose.			
54 55 56 57 58 59		Extra dose	Administration of an additional dose of the prescribed drug such as the administration of a dose after the prescription has been discontinued or administration of a dose more frequently than prescribed.			
60						

3 4 5 6 7		Deteriorated drug	Administration of a dose for a drug that has expired or when the dosage form of the drug administered has been physically or chemically compromised.				
, 8 9			Administration				
10 11 12		Wrong route	A dose of the correct drug is administered at a site that was not prescribed.				
13 14 15 16		Wrong patient	Administration of a dose of the correct drug to a different patient.				
17 18 19 20		Incompatibility	Administration of two or more incompatible medications concurrently in the same line without flushing in between the administrations of these medications.				
21 22 23		Wrong rate of administration	A dose of the drug is administered for more than $\pm 15\%$ of the recommended infusion time.				
24 25	187						
26 27 28 29 30 31 32 33 34 35 36	188	Data collection					
	189						
	190	Two clinical pharmacists with at least ten years of experience will act as observers to conduct					
	191	the direct observations. Each round of direct observation will be performed by one observer.					
	192	The observers will be trained beforehand based on the direct observation method of data					
37 38 39	193	collection as described by Barker and McConnell [24]. They will also be trained to observe					
40 41	194	and perform practical exercises on the direct observation technique. They are required to					
42 43	195	complete and pass a written examination (score of at least 80%) consisting of video simulations					
44 45 46	196	of drug preparation and administration before they can conduct the observations by themselves.					
40 47 48	197	Following that, they will perform pilot observations for three days in the ward to familiarise					
49 50	198	themselves with the procedures in the ward and to reduce the Hawthorne effect. The expected					
51 52	199	number of medication adminis	strations over three days ranges from 80 to 200 medications				
53 54 55	200	prescribed. To ensure a uniform understanding of the data collection procedures, all pilot					
55 56 57	201	observations will be discussed with the research team. However, these pilot observations will					
58 59 60	202	not be included as part of the data for this study.					

To reduce the Hawthorne effect on the observed nurses, certain disguises will be taken during data collection [15]. The nurses will be informed that the observational study conducted aims to identify the strategies to enhance the medication supply and distribution system as well as to understand the constraints of the nurses' working environment, rather than assessing their personal practices [25]. Written consent will be obtained from the nurses before data collection. Before the observation of the drug preparation and administration, identified candidate predictor variables for the development of the model, information for descriptive analysis of the samples will be collected using a predesigned data collection form, including patient-related information (e.g. age, gender, length of stay, and current diagnosis), and medication-related information for the assignment of error (e.g. name of medication prescribed, dose, and frequency).

The NICUs of the study sites are usually divided into multiple sections according to the setup of the ward and the severity of the patients. During each round of observation, one section is randomly selected and the nurse(s) involved in the drug preparation and administration in this section will be observed. The observer will closely shadow the nurses who have consented to participate in this study throughout the process. The direct observation will take place during peak medication administration times (07:00 - 22:00) on weekdays and weekends. During the observation, data related to the preparation of the medication (e.g. details of reconstitution and/or dilution such as the time of preparation, expiry, solvent, and diluent), administration of the medication (e.g. time, rate, route, and compatibility) and other procedures (e.g. labelling, double-checking of medication administered, interruption and/or distraction) will be recorded.

Page 13 of 28

BMJ Paediatrics Open

For ethical reasons, the observers will intervene in a non-judgemental manner if a potentially harmful error is about to reach the patient. Examples of MAEs that may be potentially harmful are the administration of a drug that has expired or deteriorated [26] and tenfold overdose [27]. In contrast, late in administering doses is not considered to be potentially harmful. In such events, the observers will follow a flowchart that outlines the measures required for an intervention (Figure 2) [28]. However, this error will be included in the dataset as it is assumed that this error will reach the patient if it is not intervened by the observer.

After each round of observation, the observer will compare his/her notes with the prescriber's medication order, hospital policies, manufacturer's recommendations in the product leaflet, and data published in the literature to detect possible MAEs. Demographics of the nurse (e.g. years of working experience and level of education) responsible for the preparation and administration of medications will also be recorded. In addition, the clinical pharmacist at each study site will conveniently select and observe 10% [29, 30] of drug preparations and administrations to ensure the validity and accuracy of the data collected by the observers. The observation will then be compared with the data collected by the observers. All observations by the clinical pharmacist and the observer must be identical for the data to be considered valid and accurate.

 Error identification will be independently and individually performed by two clinical pharmacists with at least six years of clinical experience. The two clinical pharmacists are not involved in the data collection of the direct observational study. Moreover, they will be performing the assignment of errors to the samples collected separately to avoid influencing each other's decisions. Disagreements encountered during the assignment of errors to the observed samples will be discussed with the research team to reach a consensus.

1	
2 3 4	252
5 6	253
7 8 9	254
9 10 11	255
12 13	256
14 15 16	257
17 18	258
19 20	259
21 22 23	260
23 24 25	261
26 27	262
28 29 30	263
30 31 32	264
33 34	265
35 36 37	266
37 38 39	267
40 41	268
42 43 44	269
44 45 46	270
47 48	271
49 50 51	272
51 52 53	273
54 55	274
56	275

255 Medications prepared and administered by nurses for all routes of administrations will be 256 included while excluded medication administrations are (1) those administered by parents, (2) enteral feedings, parenteral nutrition and blood-derived products, (3) omission of medication 257 258 administration because patient is not present in the ward during medication administration rounds, (4) omissions due to clinical reasons such as those determined by the nurses (e.g. 259 260 contraindications) and lack of intravenous access, (5) rectal administrations; when neonatalspecific rectal dosage forms are unavailable and the available paediatric rectal dosage form is 261 modified to a lower dose, and (6) medical gases and dietary supplements. The same inclusion 262 263 and exclusion criteria will be applied to the validation cohort.

o per

265 **Data analysis**

267 Predictor variables

Eligibility criteria

60

To develop a comprehensive method for identifying neonates at risk of MAEs, a total of 13 269 270 candidate predictor variables have been identified through the following sources: (1) an 271 extensive systematic review conducted to evaluate the available literature on the factors 272 associated with MAEs amongst neonates [17], (2) national data containing information on the causes of MAEs amongst neonates, extracted from the Medication Error Reporting System 273 274 (MERS) through the MOH Pharmaceutical Services Programme; and (3) expert panel. The expert panel consists of a paediatrician with 14 years of clinical experience, a clinical 275 57 58 276 pharmacist with 15 years of clinical experience, and a senior nurse with an advanced diploma 59

Page 15 of 28

282

284

1

BMJ Paediatrics Open

2	
3	
4	
5	
6	
7	
8	
9	
10	
11	
12	
13	
14	
15	
16	
17	
17	
10	
19 20	
21	
22	
23	
24	
25	
26	
27	
28	
29	
30	
31	
32	
33	
34	
35	
36	
37	
38	
39	
40	
40 41	
42	
42 43	
44	
44 45	
45 46	
40 47	
48	
49 50	
50	
51	
52	
53	
54	
55	
56	
57	
58	
59	

in Neonatology and 20 years of clinical experience. The expert panel was established to review
the predictor variables gathered from the literature review and to identify other important
predictor variables based on their clinical experience. Based on the systematic review, MERS,
and the expert panel, the identified candidate predictor variables are categorised and defined as
presented in online supplemental table S1.

283 Missing data

285 Although the predictors included in our data collection are not expected to have a considerable 286 amount of missing data, some will inevitably occur. Hence, strategies to deal with missing data will be determined based on the predictors. Predictors with more than 20% missing data will 287 288 be excluded [31]. Multiple imputations by chained equations will be performed to impute 289 missing values for predictors with data missing at random. For each predictor variable, five multiple imputation datasets will be created to obtain an overall estimate as recommended by 290 291 Rubin and Schenker [32]. Lastly, a sensitivity analysis using the pattern-mixture model approach will be employed to ensure that the data is not missing at random [33]. 292

294 Model development

295

60

293

The two strategies available for the development of a model are the full model and stepwise selection. In our study, the full model approach described by Harrell [34] where all identified candidate predictor variables will be included in the model regardless of their association with MAEs or influence on model performance will be conducted. Stepwise selection will then be performed and the results will be compared with the full model. The best model produced by

these strategies will then be chosen based on the best fit, the accuracy of the model and the model with the least error.

The categorisation of selected predictor variables into groups will be avoided to minimise the loss of potentially predictive information [35]. The frequency distributions for categorical predictor variables will be examined and categories with less than six observations will be combined [34]. Since the outcome in our study is categorical, a binary logistic regression will be performed. The regression coefficients will be estimated using maximum likelihood estimation (MLE), a probabilistic framework for estimating the model parameters. All the necessary assumptions for regression will be checked. The use of both the full model and stepwise selection is common. However, with the use of real data, certain assumptions such as multicollinearity may not be fulfilled. In instances where such assumptions are not met, the model developed may produce large variations, leading to poor regression coefficient estimates and overfitting.

Overfitting models are models that are too specific for the development sample, making them less generalisable for new but similar individuals. Considering the possibility of having an overfitted model, the least absolute shrinkage and selection operator (LASSO) binary logistic regression will be performed. LASSO is a method that penalises the model coefficients to select predictors and to reduce overfitting during the model-building process [36, 37]. In LASSO, a first-order penalty function will be constructed to shrink the regression coefficients of the predictor variables to a certain range. A regularisation factor, lambda (λ) will be chosen to maximise the out-of-sample model fit by applying a penalty to shrink the regression coefficients. Predictor variables with a regression coefficient of zero will be removed from the

BMJ Paediatrics Open

325 model, leaving behind a panel of optimal variables. Therefore, predictor variables with a weak326 association with the model will be excluded to ensure that all coefficients are optimised.

Statistical analysis will be performed using Statistical Package for Social Science (SPSS)
version 28.0 and R software version 4.2.2 (R Foundation for Statistical Computing, Vienna,
Austria).

332 Model performance

The model's performance will be evaluated using three measures, namely Brier score, calibration slope, and C-statistic. The Brier score will be utilised to assess the overall model performance. It is defined as the average squared of the difference between the observed outcome and the predicted probabilities where a lower Brier score indicates that the model has a greater predictive accuracy [34]. Next, the calibration slope will be used to assess the model calibration. Calibration is an assessment of the agreement between observed outcomes in the data and predicted outcomes of the model. It will be assessed graphically through the inspection of calibration plots. A slope of '1' indicates perfect calibration, a slope of less than '1' indicates overfitting, while a slope of more than '1' indicates underfitting [34]. The discriminatory ability of the model, i.e. the ability of the model to differentiate between patients at risk and not at risk of MAEs, will be assessed using C-statistic which is derived from the area under the receiver operating characteristic (ROC) curve. A value of '1' indicates perfect discrimination between patients at risk of MAEs and those who are not at risk while a value of 0.5 indicates that the model cannot discriminate between these two groups of patients [36].

349 Model validation

Internal validation of the prediction model will be assessed using the bootstrapping re-sampling technique to ensure that the prediction models are reproducible. This will provide insight as to whether the model is potentially too optimistic or overfitted [38]. Bootstrap samples utilising at least 500 bootstrap resampling procedures will be drawn. The difference in the discrimination and calibration between each bootstrap model and the original model developed will be averaged out to adjust for optimism [36]. Bootstrapping also provides a shrinkage factor that allows the adjustment of the estimated regression coefficients in the final model. A global shrinkage factor of greater than 0.9 is desired [34]. The external validation of the new risk prediction model will be conducted to demonstrated its predictive value. It will be conducted prospectively among new patients who are similar to those recruited for the development of the risk prediction model. The predictive performance based on the same measures of discrimination and calibration used in the internal validation will be reported. Model presentation The final model will be presented for both the derivation and validation samples. As predictions are the main interest, the full prediction model that consist of the regression coefficients and the model intercept will be published. Various modes of presentation formats such as a simplified scoring tool or web-based electronic risk calculators will be considered. Sample size Sample size calculations following the four criteria for binary outcomes as recommended by Riley et al. are performed to minimise overfitting of the model and to ensure that precise

Page 19 of 28

BMJ Paediatrics Open

predictions of the developed model [39]. We have specified the anticipated outcome proportion as 0.31 [40], a total number of candidate predictors of 15, a global shrinkage factor of 0.9 and the anticipated model performance as 0.15 as defined by Cox-Snell $R^2(R^2_{CS})$ [39]. Taking these criteria into consideration, the minimum sample size required to ensure all criteria are fulfilled is 820 drug administrations. Each sample of drug administration is considered an independent sample even if it is prepared and administered by the same nurse as the factors leading to an MAE may be different. The number of drug administrations to be observed in the study sites will be allocated proportionally to the number of expected admissions in each hospital. Ethics and dissemination This study protocol was approved by the Medical Research and Ethics Committee (MREC), Ministry of Health Malaysia (NMRR-21-1484-59494 [IIR]) on 24th January 2022 and the Medical Ethics Committee, Universiti Kebangsaan Malaysia on 10th February 2022. Findings from our study will be disseminated through presentations at scientific conferences and peer-Lie reviewed publications. Acknowledgements

We would like to thank the Director-General of Health Malaysia for his permission to publish
this article. We would like to thank Dr Lee Khai Yin, Dr Nazedah Binti Ain @ Ibrahim and
Thun Yen Kheng for their contribution to this study as the expert panel as well as all the nurses
for their participation in this study.

398 Contributors

2	
3	399
4 5	
6	400
7 8	401
9 10	402
11 12	
13 14	403
14 15 16	404
17 18	405
19 20	406
21 22	407
23 24 25	408
26 27	409
28 29	410
30 31 32	411
32 33 34	412
35 36	413
37 38	414
39 40 41	415
42 43	416
44 45	417
46 47	418
48 49 50	419
50 51 52	420
53 54	421
55 56	422
57 58 59	423
60	

399	JHB, NMS, AA, NAMT and CMP conceptualised the study. JHB and ZS designed the
400	statistical plan for this study, which was reviewed by all authors. JHB drafted the manuscript
401	and all authors reviewed manuscript. All authors read, contributed and approved the final
402	version of the manuscript.
403	
404	Funding
405	This work is supported by the Fundamental Research Grants Scheme by the Ministry of Higher
406	Education of Malaysia (FRGS/1/2022/SKK16/UK/02/7).
407	
408	Competing interests
409	None declared.
410	
411	Patient and public involvement
412	
413	Patients or the public were not involved in the design, or conduct, or reporting, or dissemination
414	plans of this research.
415	
416	Patient consent for publication
417	Not applicable.
418	Not applicable.
419	Ethics approval
420	This study received ethical approval from the Medical Research and Ethics Committee
421	(MREC), Ministry of Health Malaysia (NMRR-21-1484-59494 [IIR]) on 24th January 2022
422	and the Medical Ethics Committee, Universiti Kebangsaan Malaysia on 10th February 2022.

1 2		
- 3 4	424	Provenance and peer review
5 6	425	Not commissioned; externally peer-reviewed.
7 8 9	426	
10 11	427	Data availability statement
12 13	428	Data sharing is not applicable since no datasets were generated or analysed in this study.
14 15	429	
16 17 18	430	Open access
19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38	431	This is an open access article distributed in accordance with the Creative Commons Attribution
	432	Non Commercial (CC BY-NC 4.0) license, which permits others to distribute, remix, adapt,
	433	build upon this work non-commercially, and license their derivative works on different terms,
	434	provided the original work is properly cited, appropriate credit is given, any changes made
	435	indicated, and the use is non-commercial. See: http://creativecommons.org/licenses/by-nc/4.0/.
	436	
	437	ORCID iDs
	438	Josephine Henry Basil http://orcid.org/0000-0002-2447-7220
	439	Chandini Menon Premakumar http://orcid.org/0000-0001-6140-5069
39 40 41	440	Adliah Mhd Ali http://orcid.org/0000-0003-1306-8330
42 43	441	Nurul Ain Mohd Tahir http://orcid.org/0000-0003-0353-4799
44 45	442	Zamtira Seman http://orcid.org/0000-0002-1044-1876
46 47 48	443	Noraida Mohamed Shah http://orcid.org/0000-0002-2509-4213
49 50	444	Noraida Mohamed Shah http://orcid.org/0000-0002-2509-4213
51 52	445	References
53 54	446	
55 56 57 58 59 60	447 448 449	1. Roughead EE, Semple SJ, Rosenfeld E. The extent of medication errors and adverse drug reactions throughout the patient journey in acute care in Australia. <i>Int J Evid Based Healthc</i> . 2016;14(3):113-22.

4 451 clinical and economic burden of medication error in England. BMJ Qual Saf. 2021;30(2):96-5 452 105. 6 7 453 3. Cousins DH, Gerrett D, Warner B. A review of medication incidents reported to the 8 454 National Reporting and Learning System in England and Wales over 6 years (2005-2010). Br J 9 455 Clin Pharmacol. 2012;74(4):597-604. 10 Cousins DH, Dewsbury C, Matthew L, et al. NPSA Safety in doses: medication safety 456 4. 11 457 incidents in the NHS: the fourth report of the patient safety observatory. London.2007. 12 13 458 Walsh EK, Hansen CR, Sahm LJ, et al. Economic impact of medication error: a 5. 14 459 systematic review. Pharmacoepidemiol Drug Saf. 2017;26(5):481-97. 15 460 6. Kale A, Keohane CA, Maviglia S, et al. Adverse drug events caused by serious 16 461 medication administration errors. BMJ Qual Saf. 2012;21(11):933-8. 17 18 462 7. Krzyzaniak N, Bajorek B. Medication safety in neonatal care: a review of medication 19 463 errors among neonates. Ther Adv Drug Saf. 2016;7(3):102-19. 20 464 8. Kwan JL, Lo L, Sampson M, et al. Medication reconciliation during transitions of care 21 465 as a patient safety strategy: a systematic review. Ann Intern Med. 2013;158(5 Pt 2):397-403. 22 Nguyen TL, Leguelinel-Blache G, Kinowski JM, et al. Improving medication safety: 23 466 9. 24 467 Development and impact of a multivariate model-based strategy to target high-risk patients. 25 468 PLoS One. 2017;12(2):e0171995. 26 469 Ebbens MM, Laar SAV, Wesselink EJ, et al. Prospective Validation of a Risk Prediction 10. 27 Model to Identify High-Risk Patients for Medication Errors at Hospital Admission. Ann 470 28 29 471 Pharmacother. 2018;52(12):1211-17. 30 472 Fung L, Huynh T, Brush T, et al. A Correlation of a Medication-Focused Risk Score to 11. 31 473 Medication Errors at Discharge. J Clin Pharmacol. 2020;60(11):1416-23. 32 474 12. Bonnerup DK, Lisby M, Saedder EA, et al. Risk of prescribing errors in acutely 33 475 admitted patients: a pilot study. Int J Clin Pharm. 2016;38(5):1157-63. 34 35 476 13. Saedder EA, Lisby M, Nielsen LP, et al. Detection of Patients at High Risk of 36 477 Medication Errors: Development and Validation of an Algorithm. Basic Clin Pharmacol 37 478 Toxicol. 2016;118(2):143-9. 38 479 14. Kang MJ, Jin Y, Jin T, et al. Automated Medication Error Risk Assessment System 39 480 (Auto-MERAS). J Nurs Care Qual. 2018;33(1):86-93. 40 41 481 Allan EL, Barker KN. Fundamentals of medication error research. Am J Hosp Pharm. 15. 42 482 1990;47(3):555-71. 43 483 Meyer-Massetti C, Cheng CM, Schwappach DL, et al. Systematic review of 16. 44 484 medication safety assessment methods. Am J Health Syst Pharm. 2011;68(3):227-40. 45 46 485 17. Henry Basil J, Premakumar CM, Mhd Ali A, et al. Prevalence, Causes and Severity of 47 486 Medication Administration Errors in the Neonatal Intensive Care Unit: A Systematic Review 48 487 and Meta-Analysis. Drug Saf. 2022;45(12):1457-76.

- 487 and Meta-Analysis. *Drug Suff.* 2022,45(12):1437-70.
 50 488 18. Royston P, Moons KG, Altman DG, et al. Prognosis and prognostic research:
 51 489 Developing a prognostic model. *BMJ*. 2009;338:b604.
- 490
 52
 490
 53
 53
 491
 54
 54
 492
 20.
 Collins GS, Reitsma JB, Altman DG, et al. Transparent reporting of a multivariable
- 492 20. Commis GS, Reitsma JB, Altman DG, et al. Transparent reporting of a multivariable
 493 prediction model for individual prognosis or diagnosis (TRIPOD): the TRIPOD statement.
 57 494 BMJ. 2015;350:g7594.
- 58

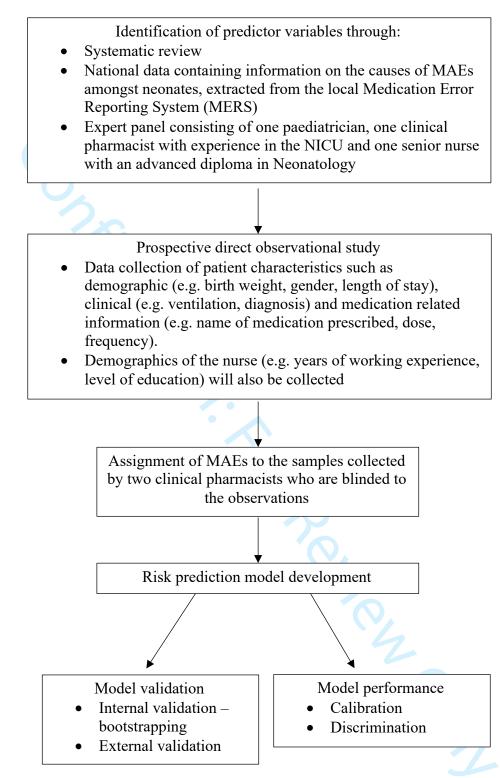
1 2 3

450

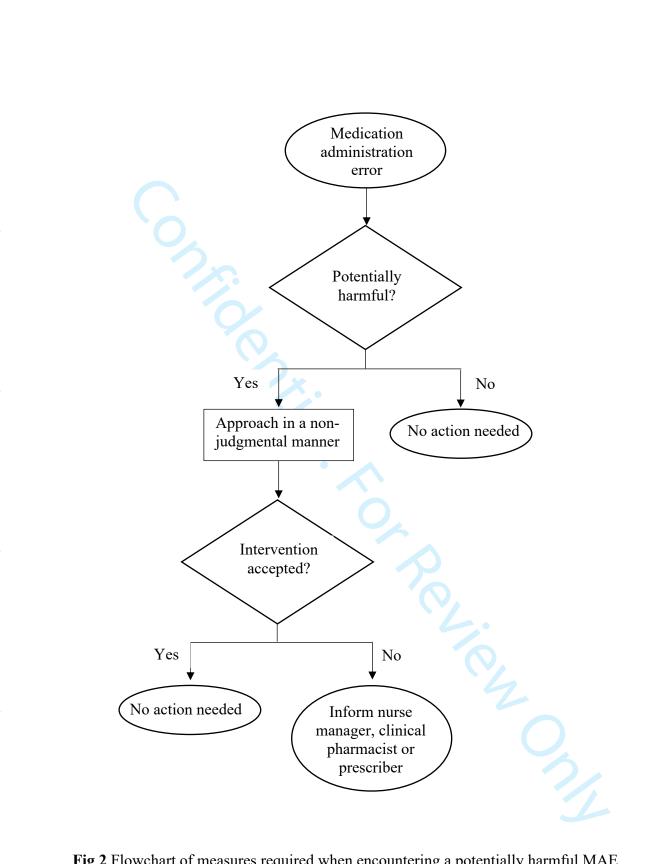
2.

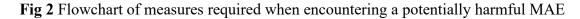
59 60 Elliott RA, Camacho E, Jankovic D, et al. Economic analysis of the prevalence and

Page 23 of 28


1

BMJ Paediatrics Open


2		
3	495	21. Chedoe I, Molendijk H, Hospes W, et al. The effect of a multifaceted educational
4	496	intervention on medication preparation and administration errors in neonatal intensive
5 6	497	care. Arch Dis Child Fetal Neonatal Ed. 2012;97(6):F449-55.
0 7	498	22. McLeod MC, Barber N, Franklin BD. Methodological variations and their effects on
8	499	reported medication administration error rates. <i>BMJ Qual Saf</i> . 2013;22(4):278-89.
9	500	23. ASHP guidelines on preventing medication errors in hospitals. <i>Am J Hosp Pharm</i> .
10	500	1993;50(2):305-14.
11		
12 13	502	24. Barker KN, McConnell WE. The problems of detecting medication errors in hospitals.
13 14	503	Am J Hosp Pharm. 1962;19:360-9.
15	504	25. van der Veen W, van den Bemt P, Wouters H, et al. Association between
16	505	workarounds and medication administration errors in bar-code-assisted medication
17	506	administration in hospitals. J Am Med Inform Assoc. 2018;25(4):385-92.
18	507	26. Ramirez-Camacho M, Ake N, Gloria A, et al. Medication errors of intravenous therapy
19 20	508	in the neonatal intensive care unit of a second-level hospital in southeastern Mexico. Latin
20	509	American Journal of Pharmacy. 2020;39(3):604-11.
22	510	27. Doherty C, Mc Donnell C. Tenfold medication errors: 5 years' experience at a
23	511	university-affiliated pediatric hospital. Pediatrics. 2012;129(5):916-24.
24	512	28. Westbrook JI, Li L, Raban MZ, et al. Associations between double-checking and
25	513	medication administration errors: a direct observational study of paediatric inpatients. BMJ
26 27	514	Qual Saf. 2021;30(4):320-30.
28	515	29. Potts AL, Barr FE, Gregory DF, et al. Computerized physician order entry and
29	516	medication errors in a pediatric critical care unit. <i>Pediatrics</i> . 2004;113(1 Pt 1):59-63.
30	517	30. Kadmon G, Bron-Harlev E, Nahum E, et al. Computerized order entry with limited
31	518	decision support to prevent prescription errors in a PICU. <i>Pediatrics</i> . 2009;124(3):935-40.
32	519	31. Parekh N, Ali K, Davies JG, et al. Medication-related harm in older adults following
33 34	520	hospital discharge: development and validation of a prediction tool. <i>BMJ Qual Saf</i> .
35	520	2020;29(2):142-53.
36	522	32. Rubin DB, Schenker N. Multiple imputation in health-care databases: an overview
37	523	and some applications. <i>Stat Med.</i> 1991;10(4):585-98.
38		
39	524	
40 41	525	Data in Trial-Based Cost-Effectiveness Analysis: A Tutorial. <i>Pharmacoeconomics</i> .
41	526	2018;36(8):889-901.
43	527	34. Harrell FE, Jr. Regression modeling strategies: with applications to linear models,
44	528	logistic and ordinal regression and survival analysis: Springer; 2015.
45	529	35. Steyerberg EW. Clinical Prediction Models. A Practical Approach to Development,
46	530	Validation and Updating. 1st edition ed. Berline: Springer; 2009.
47 49	531	36. Steyerberg EW. Clinical Prediction Models. 2nd ed ed: Springer Nature Switzerland;
48 49	532	2019.
50	533	37. Grant SW, Collins GS, Nashef SAM. Statistical Primer: developing and validating a risk
51	534	prediction model. <i>Eur J Cardiothorac Surg</i> . 2018;54(2):203-08.
52	535	38. Moons KG, Kengne AP, Woodward M, et al. Risk prediction models: I. Development,
53	536	internal validation, and assessing the incremental value of a new (bio)marker. <i>Heart</i> .
54 55	537	2012;98(9):683-90.
55 56	538	39. Riley RD, Snell KI, Ensor J, et al. Minimum sample size for developing a multivariable
50 57	539	prediction model: PART II - binary and time-to-event outcomes. <i>Stat Med</i> . 2019;38(7):1276-
58	540	96.
59	5 10	
60		


1 2 3 4 5 6 7 8	541 542 543 544	40. Raja Lope RJ, Boo NY, Rohana J, et al. A quality assurance study on the administration of medication by nurses in a neonatal intensive care unit. <i>Singapore Med J</i> . 2009;50(1):68-72.
9 10 11 12 13 14 15 16 17		
18 19 20 21 22 23 24 25 26		
27 28 29 30 31 32 33 34 35		
36 37 38 39 40 41 42 43 44		
44 45 46 47 48 49 50 51 52 53 54 55		
56 57		

- 57 58 59
- 60

Fig 1 Flowchart of risk prediction model development and validation of medication administration errors (MAEs) in neonates

				BMJ Paediatrics Open		yo-2022-001765	
Table S1	l Candidate pro	edictor variables identified for	inclusion	in the multivariable		65 on 8 Febr	
Candid predicte		Definition		Variable type	Valid range/level	uary 2023.	Source
		Jr:	Admin	istration-related va	riables	Downl	
Route o adminis		The site at which a dose of th is administered	ne drug	Nominal	Classified into two and parenteral)	acategories (oral	SR
	nplexity of g preparation	Number of steps taken during preparation of a dose of the o drug		Nominal	or from a ready preparation ii) Two-step: Rec drug which is a the withdrawal dose or withdr required dose a which is then f dilution iii) Three-step: Rec drug which is a the withdrawal	drawal of the om an ampoule -to-use onstitution of a hen followed by of the required wal of the com an ampoule, of llowed by	SR
)	Workin- e	environment related	l variables	Protect	
Nurse's	workload	Number of patients per nurse	;	Count	1 ± 29	ted by copyright.	MERS
			https://m	c.manuscriptcentral.co			

	В	BMJ Paediatrics Open		50-2022-001765 on 8 Februa		Page 28 of 28
Nurse's working hours	Number of hours a nurse has worked	Count	1 to 24	on 8 Febru	MERS	
Time of administration	The time a dose of the drug is administered	Nominal	Classified into two	Ecategories 9-17:00] and after	Expert panel	
Double check	The drug prepared for administration is independently double-checked by another healthcare professional against the prescription or medication chart before administration	Nominal	0 (No), 1(Yes)	wnloaded from http://	Expert panel	
	Pati	ient-related variables	2			
Types of ventilation	Administration of ventilatory support with/without using an invasive artificial airway	Nominal	Classified into two invasive ventilatio ventilation)	and invasive	SR	
Birth weight	The body weight of the neonate at birth	Continuous	gm	com/ on A	SR	
Number of medications administered	Number of medications administered by the nurse per patient	Count		omi.com/ on April 20. 2024 t	MERS & SR	
	Indiv	idual-related variables		by que		_
Working experience in NICU	Total number of years employed as a nurse in a NICU	Continuous	years	st. Protected by copyright.	Expert panel	
	https://mc.	.manuscriptcentral.com/bmjp	0			

Page 29 of 28			BMJ Paediatrics Open		po-2022-001765	
1 2 3 4 5	Overall nursing experience	Total number of years employed as a nurse	Continuous	years	001765 on 8 Februar	Expert panel
6 7 8 9 10	Educational status	Level of education	Ordinal	Classified into the (diploma, advanc neonatal care, deg	categories Siploma in The second seco	SR
11 12 13	Labelling	Drug prepared and administered is labelled according to local policies	Nominal	0 (No), 1(Yes)	mloaded	MERS & expert panel
14 15 16 17 18	Interruption	Stimuli that cause the nurses to cease the drug preparation and administration temporarily	Nominal	0 (No), 1(Yes)	from http://bm	SR, MERS & expert panel
19 20 21 22 23 24 25 26	Distraction	Stimuli that do not cause the cessation of the drug preparation and administration but cause the nurse to respond to the stimuli while continuing the drug preparation and administration	Nominal	0 (No), 1(Yes)	nloaded from http://bmjpaedsopen.bmj.com/ o	SR, MERS & expert panel
27 28 29 30 31 32	MERS = medication en	rror reporting system, SR = systematic re	view		n April 20, 2024 by guest. Protected by copyright	
33 34 35 36					Juest. Protec	
 37 38 39 40 41 42 					:ted by copyrigh	
42 43 44 45 46		https://mc	manuscriptcentral.com/bmjj		₽ 	