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ABSTRACT
Introduction  Aflatoxin B1 (AFB1) is a carcinogen 
produced by Aspergillus flavus and Aspergillus parasiticus 
which grow on maize. Given the high prevalence of 
child stunting (ie, impaired growth) and other nutritional 
disorders in low-income and middle-income countries, 
where maize is consumed, the role of aflatoxin 
exposure may be significant. Observational reports have 
demonstrated associations between aflatoxin exposure 
and impaired child growth; however, most have been 
cross-sectional and have not assessed seasonal variations 
in aflatoxin, food preparation and dynamic changes in 
growth. Biological mechanistic data on how aflatoxin 
may exert an impact on child growth is missing. This 
study incorporates a prospective cohort of children from 
rural Guatemala to assess (1) temporal associations 
between aflatoxin exposure and child growth and (2) 
possible mediation of the gut microbiome among aflatoxin 
exposure, inflammation and child growth.
Methods and analysis  We will prospectively 
evaluate aflatoxin exposure and height-for-age difference 
trajectories for 18 months in a cohort of 185 children 
aged 6–9 months at enrolment. We will assess aflatoxin 
exposure levels and biomarkers of gut and systemic 
inflammation. We will examine the faecal microbiome 
of each child and identify key species and metabolic 
pathways for differing AFB1 exposure levels and child 
growth trajectories. In parallel, we will use bioreactors, 
inoculated with faeces, to investigate the response of 
the gut microbiome to varying levels of AFB1 exposure. 
We will monitor key microbial metabolites and AFB1 
biotransformation products to study nutrient metabolism 
and the impact of the gut microbiome on aflatoxin 
detoxification/metabolism. Finally, we will use path 
analysis to summarise the effect of aflatoxin exposure and 
the gut microbiome on child growth.
Ethics and dissemination  Ethics approval was 
obtained from Arizona State University Institutional Review 
Board (IRB; STUDY00016799) and Wuqu’ Kawoq/Maya 
Health Alliance IRB (WK-2022-003). Findings will be 
disseminated in scientific presentations and peer-reviewed 
publications.

INTRODUCTION
More than 40% of children under 5 years of 
age are at risk of not reaching their develop-
mental potential, many due to the impact of 
stunting.1 The rural Indigenous population 
in Guatemala has one of the highest rates 
of child stunting in the world. Interest in a 
possible role for aflatoxin in stunting has 
grown in recent years, made more compelling 
by the observation that many countries with 
high rates of stunting consume large amounts 
of maize and have documented aflatoxin in 
food sources.2–7 However, most studies have 
been cross-sectional and have not assessed 
seasonal variations in aflatoxin, food prepa-
ration and dynamic changes in child growth. 
In addition, biological mechanistic data on 

WHAT IS ALREADY KNOWN ON THIS TOPIC
	⇒ Aflatoxin B1 exposure is potentially associated with 
impaired child growth.

	⇒ Aflatoxin B1 exposure is associated with alterations 
in the gut microbiome.

	⇒ Mechanistic work demonstrating how aflatoxin 
might lead to a growth phenotype is needed.

WHAT THIS STUDY ADDS
	⇒ This study will reveal mechanistic explanations for 
hypothesised links among aflatoxin B1 exposure, the 
gut microbiome and growth.

	⇒ This study will provide insights into the development 
of therapeutics for aflatoxin-related child stunting.

HOW THIS STUDY MIGHT AFFECT RESEARCH, 
PRACTICE OR POLICY

	⇒ The outcome of this study will help support large-
scale investments in aflatoxin remediation efforts 
on the part of public health organisations working to 
improve global child health.

 on A
pril 9, 2024 by guest. P

rotected by copyright.
http://bm

jpaedsopen.bm
j.com

/
bm

jpo: first published as 10.1136/bm
jpo-2023-001960 on 20 A

pril 2023. D
ow

nloaded from
 

http://bmjopen.bmj.com/
http://orcid.org/0000-0002-3673-5821
http://orcid.org/0000-0001-5026-7625
http://orcid.org/0000-0001-6519-8060
http://orcid.org/0000-0002-0069-6904
http://orcid.org/0000-0001-6841-9439
http://orcid.org/0000-0001-6064-3524
http://orcid.org/0000-0001-7274-8315
http://orcid.org/0000-0002-9541-1958
http://crossmark.crossref.org/dialog/?doi=10.1136/bmjpo-2023-001960&domain=pdf&date_stamp=2023-04-20
http://bmjpaedsopen.bmj.com/


2 Cheng Q, et al. BMJ Paediatrics Open 2023;7:e001960. doi:10.1136/bmjpo-2023-001960

Open access

how aflatoxin may exert an impact on child growth are 
missing.

There have been many interventions to improve 
stunting in Guatemala, yet few have had tangible impact.8 
The gut microbiome has emerged as a key regulator of 
human health and nutrition, and a promising target for 
interventions.9 Recently, our group demonstrated signif-
icant differences in children’s gut microbiomes between 
those with high and low exposures to aflatoxins in Guate-
mala.10 Our data also revealed potential shifts in diet-
based aflatoxin exposure dependent on season and an 
association between diet-based aflatoxin exposure and 
child height-for-age.11 12 To date, only a few animal studies 
have evaluated the impact of aflatoxin on the gut micro-
biome,13–18 while direct investigation of the aflatoxin-
exposed human gut microbiome is lacking. In addition 
to microbial changes induced by aflatoxin, gut micro-
biota can interact with aflatoxin through bioadsorption 
and biotransformation.19–22 Aflatoxin can bind to extra-
cellular structures on microorganisms (eg, Lactobacillus 
and Saccharomyces), which decreases its bioavailability.19 22 
Highly toxic aflatoxin such as aflatoxin B1 (AFB1) can 
also be metabolised by bacteria (eg, Bacillus, Lactoba-
cillus and Pseudomonas) to less toxic or even non-toxic 
substances.20 A close examination of aflatoxin degrada-
tion pathways and metabolites produced by human gut 
microbiota is also lacking.

We aim to assess temporal changes in diet, aflatoxin 
exposure and linear growth faltering in a prospective 
cohort of children from rural Guatemala, a country that 
has one of the highest rates of child stunting and aflatoxin 
exposure in the world. We will prospectively evaluate the 
association among AFB1 exposure, height-for-age growth 
trajectories, and the gut microbiome over 18 months 
for 185 children aged 6–9 months at enrolment. In 
addition, we will use bioreactors inoculated with faecal 
samples to evaluate the response of the gut microbiome 
to varying levels of AFB1 exposure, and the impact of the 
gut microbiome on aflatoxin detoxification/metabolism. 
We hypothesise that (1) aflatoxin consumption impacts 
child linear growth by altering the composition of the 
gut microbiome and inciting a systemic inflammatory 
response; (2) aflatoxin exposure alters luminal nutrient 

metabolism by the gut microbiome and (3) certain gut 
microorganisms metabolise aflatoxin and may be protec-
tive against aflatoxin exposure.

METHODS
Study setting and design
In this project, we will work in rural Guatemala in collab-
oration with Maya Health Alliance, the lead local insti-
tution, which facilitates primary care and research in 
service of the local Indigenous Maya population. Maya 
Health Alliance works alongside Indigenous communi-
ties to improve access to healthcare as well as leading 
clinical trial and observational studies on complementary 
feeding, stunting, dietary quality and early child develop-
ment.23–25

This study includes field-based and lab-based compo-
nents (figure  1). For the field-based component, chil-
dren 6–9 months of age, only one child per household, 
will be enrolled in the study and followed for 18 months 
through 24–27 months of age. During the 18 months 
when children are enrolled in the study, households 
will be visited for data collection three times, at 9-month 
increments. Household visits will consist of surveys (eg, 
dietary intake), anthropometric measurements, sampling 
of household maize stores and foods, and collection of 
venous blood specimens and faecal samples.

Blood samples will be used to measure serum AFB1-
lysine (AFB1-lys) adduct levels, C reactive protein (CRP) 
and erythrocyte sedimentation rate (ESR). Faecal 
samples will be used to analyse faecal calprotectin, gut 
microbiome composition and microbial metabolites such 
as short-chain fatty acids (SCFAs). Faecal samples will also 
be used in the lab to seed bioreactors which will then 
be dosed with varying levels of AFB1 (see the ‘Bioreactor 
setup and sampling’ section). Microbial metabolites (eg, 
SCFAs), AFB1 and its degradation products, microbiome 
structures (DNA) and functions (RNA) will be analysed.

Outcomes
The primary growth outcome will be height-for-age 
difference (HAD) scores, calculated as the difference 
between measured height-for-age and the median 

Figure 1  Overall project design and path analysis integration. AFB1, aflatoxin B1; HAD, height-for-age difference; AFB1-lys, 
aflatoxin B1-lysine; SCFAs, short-chain fatty acids; NH3-N, ammoniacal nitrogen; COD, chemical oxygen demand.
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height-for-age from the WHO’s Child Growth Standards 
reference population. The primary exposure outcome 
will be serum AFB1-lys, which will be used to estimate 
aflatoxin exposure. Children will be divided into ‘high’ 
and ‘low’ AFB1-lys groups using a potential cut-off of 5 pg 
AFB1/mg albumin (pending exposure data in the base-
line assessments).4 26–29 Secondary exposure outcomes 
will be markers of systemic and intestinal inflammation, 
including ESR, CRP, SCFAs and faecal calprotectin. 
These outcome measurements will be collected at three 
time points beginning at 6–9 months of age and will be 
collected every 9 months until the final time point at 
24–27 months of age. In addition to these outcomes, we 
will evaluate the faecal microbiome as a mediator between 
exposures and outcomes. Other outcomes include the 
results from the bioreactor experiments, including AFB1-
induced microbiome composition and function changes, 
microbial metabolite profiles and AFB1 degradation 
products.

Eligibility criteria
Participants will include children from Maya Health 
Alliance catchment areas located in the Departments 
of Chimaltenango, Sololá, Sacatepéquez and Such-
itepéquez. Maya Health Alliance community health 
clinics and health centres will be the primary source for 
identifying potential children. In addition, the project 
will be promoted through community centres, churches, 
schools and community leader meetings.

Inclusion criteria are as follows:
	► Infants who are 6–9 months of age at baseline.
	► At least one caregiver willing to provide written 

informed consent and participate in study activities.
	► Permanent residents of the communities or planned 

residence in the study area at least for the 24 months 
following enrolment.

	► Singleton birth.
Exclusion criteria are as follows:
	► Infants with moderate to severe acute malnutrition 

(weight-for-length z-score ≤−2).
	► Infants with a chronic medical condition that affects 

growth and/or requires special care, present at base-
line or diagnosed subsequently during the study 
observation period, such as:
	– Congenital heart disease.
	– Genetic conditions.
	– Kidney disease.
	– Neurological deficits.
	– Problems of cleft lip or palate.

	► Infants whose caregivers have cognitive or other 
impairments that prevent them from providing 
informed consent or reliable information.

	► Concurrent participation in any other clinical trial.

Sample size
Our planned sample size is 185 children. This is based 
on assumptions of an SD for HAD of 3.5 cm and an 
intrasubject correlation coefficient of 0.8 for repeated 

measures, based on recent Guatemalan Demographic 
Health Survey Data30 and Maya Health Alliance observa-
tional data.31–33 With these assumptions, a sample of 154 
children will allow us to detect a minimum difference 
in HAD slopes of 1.0 cm between high and low AFB1-lys 
groups (above or below 5 pg AFB1/mg albumin) with 
80% power, at an alpha level of 0.05. The total sample of 
185 participants includes an increase of 20% to account 
for possible dropouts or lost to follow-up and will also 
allow for detection of the same 1 cm difference in slopes 
if our SDs are smaller than expected (as low as 2.5).

Recruitment
For the recruitment process, study staff will identify 
potential participants and inform caregivers of the study 
using a recruitment script, and directly answer questions 
or concerns about the study. This will either be conducted 
by phone, in routine healthcare settings or via home 
visits. Interested caregivers will be screened for eligibility 
via a rapid screening including general information on 
the child’s demographic characteristics and inclusion 
criteria. Caregivers of children that meet the inclusion 
criteria after the rapid screening will review the informed 
consent form the same day or in a rescheduled home 
visit. Staff conducting recruitment and informed consent 
activities will be bilingual (Spanish and Kaqchikel, or 
other Mayan languages, as appropriate), and will provide 
information in the caregiver’s preferred language.

Field data and sample collection
The study will involve three household visits at 9-month 
intervals. During these visits, the team will conduct surveys 
and anthropometric measurements, collect samples of 
maize, and collect venous blood specimens from the 
children (less than 2 mL/kg body weight). In addition, 
the team will place a sterile diaper on the child at the 
start of each visit and collect faeces on defecation. The 
maize samples will be tested for AFB1 concentrations, 
and a probable daily intake (PDI) score will be estimated 
via cooking practices, maize consumption recall and 
child body weight. The team will conduct parallel non-
consecutive 24-hour dietary recalls using a locally vali-
dated method. Breastfeeding practices will be recorded, 
although previous data suggest that breast milk is not a 
clinically significant source of aflatoxin exposure in the 
population being studied and similar settings.2 Blood 
samples will be collected by a trained nurse phlebotomist. 
Faecal samples will be collected in raw form and in glyc-
erol and stored at −80°C until further processing. In addi-
tion to the planned testing, blood and faecal samples will 
be archived for future testing related to areas of specific 
interest to the study aims of this research project.

Bioreactor setup and sampling
We will use bioreactors to investigate the AFB1-gut micro-
biome interactions and use these results to elucidate 
microbiome-related observations in the cohort study.34–36 
We will select 20 children from the lower-aflatoxin 
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exposure group and 20 from the higher-exposure group 
based on their AFB1-lys levels, HAD scores and faecal 
microbiome composition (figure 1). We will collect their 
faeces in glycerol at two time points and combine those 
from the same age and same group as the inocula for 
bioreactors (ie, four inocula in total). We will feed the 
bioreactors with maize starch (the primary carbohydrate 
source in the maize-based diet and the matrix that AFB1 
is associated with), other necessary nutrients and three 
doses of AFB1 that represent the maximum, minimum 
and average amount of AFB1 ingested by the children. 
We will operate the reactors in a fill-and-draw mode to 
simulate transit and retention time in the colon. We will 
collect liquid samples periodically for metabolite anal-
yses (eg, SCFAs, AFB1 degradation products), and micro-
organisms for microbiome composition (DNA) and func-
tion (RNA) analyses.

Statistical methods
We will use the statistically appropriate correlation-based 
methods to evaluate associations between the hypothe-
sised pathways (figure 2). We will assess growth trajectory 
differences between higher and lower aflatoxin exposure 
groups (as defined above) using a longitudinal mixed 
model.37 We will control for the effect of a set of poten-
tial confounding factors and covariates (eg, diet, age, 
sex) collected in the household survey. Furthermore, to 
describe the mediating, moderating, direct and indirect 
effects among the microbiome, aflatoxin exposure, child 
growth outcomes and other factors, we will use path anal-
ysis and latent growth models.38 39

Data management and confidentiality
Study personnel will be trained on standard operating 
procedures for recruitment, enrolment and data collec-
tion tasks. Data quality will be ensured using native data 
field definition functions in digital data capture software 
and ongoing quality control measures such as database 
review and random audits of in-field operations. Each 
subject will be assigned a unique study ID number and 
this number will be the only link between their name 
and research data. Identifiable data will be retained by 
Maya Health Alliance for at least 3 years from the date 
of study completion or primary outcomes are published, 

whichever is later. Deidentified datasets will be trans-
ferred to Arizona State University and may also be depos-
ited in public data repositories at the time of publication. 
No identifiable data will be released publicly.

Data monitoring, harms and auditing
The rate of subject accrual and compliance with inclu-
sion/exclusion criteria will be monitored monthly 
during the recruitment phase. The study may be stopped 
early if there is regional or national political instability or 
difficulty with recruitment or retention that significantly 
impacts the ability to evaluate the study endpoints. The 
study has minimal risk to subjects. The anticipated risks 
include lost productivity or interference with domestic 
routines for the caregivers of enrolled children, risk of 
psychological stress or stigma for caregivers discussing 
possible delays in child development, risk of accidental 
disclosure of personal or confidential data, and risk 
of pain or infection associated with blood draws. To 
address these risks, standard operating procedures have 
been developed, including a specific operating proce-
dure governing behavioural distraction techniques and 
limited phlebotomy attempts for children. The study is 
not expected to have any significant adverse events, but 
any perceived adverse events or complaints from partici-
pating communities or caregivers will be reported to the 
institutional review board (IRB) and granting authorities. 
Staff will be trained to report adverse events following 
established protocol. Staff will provide counselling to 
caregivers when laboratory results are returned and assist 
with linkages to clinical care when indicated.

Patient and public involvement
Patients or the public were not involved in the design of 
our research protocol. However, prior to initiating field 
work, community meetings will be held to solicit feedback 
on planned research activities, and results obtained from 
the study will be communicated back to the community 
in regular community meetings.

Informed consent
Study staff members will explain the study and obtain 
written informed consent from the caregiver/legal 
guardian of the child participating in the study. Informed 

Figure 2  Diagram of hypothesised pathways in aflatoxin-child growth model. AFB1, aflatoxin B1; PDI, probable daily intake; 
CRP, C-reactive protein; ESR, erythrocyte sedimentation rate; SCFAs, short-chain fatty acids.
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consent will be administered in Spanish or the Mayan 
language of the caregiver’s choosing. Children partici-
pating in the study are less than 24 months old and are 
not capable of providing assent. Once signed informed 
consent is given, the study staff member will provide 
the caregiver will be provided with a signed copy of the 
informed consent (online supplemental file 1).

Dissemination policy
Laboratory results will be returned to participating 
caregivers by study staff. Results will be explained in 
detail and linkages to clinical care facilitated when 
indicated. We will educate the public and the scientific 
community by publishing in peer-reviewed scientific 
journals, presenting our findings at microbiome-related, 
toxicology-related and environmental engineering-
related conferences and webinars, and by conducting 
town-hall style meetings with participating communities.
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