Skip to main content

Advertisement

Log in

Consensus guidelines on sedation and analgesia in critically ill children

  • Special Article
  • Published:
Intensive Care Medicine Aims and scope Submit manuscript

Abstract

Objective

The United Kingdom Paediatric Intensive Care Society Sedation, Analgesia and Neuromuscular Blockade Working Group is a multi-disciplinary expert panel created to produce consensus guidelines on sedation and analgesia in critically ill children and forward knowledge in these areas. Sedation and analgesia are recognised as important areas of critical care practice and adult clinical practice guidelines in these fields remain amongst the most popular of those produced by the Society of Critical Care Medicine. However, similar clinical practice guidelines have not previously been produced for the critically ill paediatric patient.

Design

A modified Delphi technique was used to allow the Working Group to anonymously consider draft recommendations in three Delphi rounds with predetermined levels of agreement. This process was supported by a total of four consensus conferences. Once consensus had been reached, a systematic review of the available literature was carried out.

Outcome

A set of consensus guidelines was produced including 20 key recommendations, 10 relating to the provision of analgesia and 10 relating to the sedation of critically ill children. An evaluation of the existing literature supporting these recommendations is provided.

Conclusions

Multi-disciplinary consensus guidelines for maintenance sedation and analgesia in critically ill children have been successfully produced and are supported by levels of evidence (excluding sedation and analgesia for procedures and excluding neonates). The working group has highlighted the paucity of high-quality evidence in these important clinical areas and this emphasises the need for further randomised clinical trials in this area.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Shapiro BA, Warren J, Egol AB, Greenbaum DM, Jacobi J, Nasraway SA, Schein RM, Spevetz A, Stone JR (1995) Practice parameters for intravenous analgesia and sedation for adult patients in the intensive care unit: an executive summary. Crit Care Med 23:1596–1600

    Article  PubMed  CAS  Google Scholar 

  2. Jacobi J, Fraser GL, Coursin DB, Riker RR, Fontaine D, Wittbrodt ET, Chalfin DB, Masica MF, Bjerke HS, Coplin WM, Crippen DW, Fuchs BD, Kelleher RM, Marik PE, Nasraway SA Jr, Murray MJ, Peruzzi WT, Lumb PD; Task Force of the American College of Critical Care Medicine (ACCM) of the Society of Critical Care Medicine (SCCM), American Society of Health-System Pharmacists (ASHP), American College of Chest Physicians (2002) Clinical practice guidelines for the sustained use of sedatives and analgesics in the critically ill adult. Crit Care Med 30:119–141

    Article  PubMed  Google Scholar 

  3. Harbour R, Miller J (2001) A new system for grading recommendations in evidence based guidelines BMJ 323:334–336

    Google Scholar 

  4. Griffin JP, Myers S, Kopelke C, Walker D (1988) The effects of progressive muscular relaxation on subjectively reported disturbance due to hospital noise. Behav Med 14:37–42

    Article  PubMed  CAS  Google Scholar 

  5. Labyak SE, Metzger BL (1997) The effects of effleurage backrub on the physiological components of relaxation: a meta-analysis. Nurs Res 46:59–62

    Article  PubMed  CAS  Google Scholar 

  6. Richards KC (1998) Effect of a back massage and relaxation intervention on sleep in critically ill patients. Am J Crit Care 7:288–299

    PubMed  CAS  Google Scholar 

  7. Stevenson JG, French JW, Tenckhoff L, Maeda H, Wright S, Zamberlin K (1990) Video viewing as an alternative to sedation for young subjects who have cardiac ultrasound examinations. J Am Soc Echocardiogr 3:488–490

    PubMed  CAS  Google Scholar 

  8. Koch ME, Kain ZN, Ayoub C, Rosenbaum SH (1998) The sedative and analgesic sparing effects of music. Anesthesiology 89:300–306

    Article  PubMed  CAS  Google Scholar 

  9. Bullock EA, Shaddy RE (1993) Relaxation and imagery techniques without sedation during right ventricular endomyocardial biopsy in pediatric heart transplant patients. J Heart Lung Transplant 12:59–62

    PubMed  CAS  Google Scholar 

  10. Guzzetta CE (1989) Effects of relaxation and music therapy on patients in a coronary care unit with presumptive myocardial infarction. Heart Lung 18:609–616

    PubMed  CAS  Google Scholar 

  11. Updike P (1990) Music therapy results for ICU patients. Dimens Crit Care Nurs 9:39–45

    Article  PubMed  CAS  Google Scholar 

  12. Bolwerk CA (1990) Effects of relaxing music on state anxiety in myocardial infarction patients. Crit Care Nurs Q 13:63–72

    PubMed  CAS  Google Scholar 

  13. Zimmerman L, Nieveen J, Barnason S, Schmaderer M (1996) The effects of music interventions on postoperative pain and sleep in coronary artery bypass graft (CABG) patients. Sch Inq Nurs Pract 10:153–170

    PubMed  CAS  Google Scholar 

  14. Byers JF, Smyth KA (1997) Effect of a music intervention on noise annoyance, heart rate, and blood pressure in cardiac surgery patients. Am J Crit Care 6:183–191

    PubMed  CAS  Google Scholar 

  15. Chan L (1998) Effectiveness of a music therapy intervention on relaxation and anxiety for patients receiving ventilatory assistance. Heart Lung 27:169–176

    Article  Google Scholar 

  16. White JM (1999) Effects of relaxing music on cardiac autonomic balance and anxiety after acute myocardial infarction. Am J Crit Care; 8:220–230

    PubMed  CAS  Google Scholar 

  17. Playfor SD, Thomas DA, Choonara I (2000) Recall following Paediatric Intensive Care. Arch Dis Child; 83:445–448

    Article  PubMed  CAS  Google Scholar 

  18. Stein-Parbury J, McKinley S (2000) Patients' experiences of being in an intensive care unit: A select literature review. Am J Crit Care; 9:20–27

    PubMed  CAS  Google Scholar 

  19. Meyer TJ, Eveloff SE, Bauer MS, Schwartz WA, Hill NS, Millman RP (1994) Adverse environmental conditions in the respiratory and medical ICU settings. Chest; 105:1211–1216

    Article  PubMed  CAS  Google Scholar 

  20. Aaron JN, Carlisle CC, Carskadon MA, Meyer TJ, Hill NS, Millman RP (1996) Environmental noise as a cause of sleep disruption in an intermediate respiratory care unit. Sleep 19:707–710

    PubMed  CAS  Google Scholar 

  21. Freedman NS, Kotzer N, Schwab RJ (1999) Patient perception of sleep quality and etiology of sleep disruption in the intensive care unit. Am J Resp Crit Care Med 159:1155–1162

    PubMed  CAS  Google Scholar 

  22. Agency UEP. 1974. Information on levels of environmental noise requisite to protect public health and welfare with an adequate margin of safety. US Government Printing Office, Washington, DC.

  23. Chen HI, Tang YR (1989) Sleep loss impairs inspiratory muscle endurance. Am Rev Respir Dis 140:907–909

    PubMed  CAS  Google Scholar 

  24. Schiffman PL, Trontell MC, Mazar MF, Edelman NH (1983) Sleep deprivation decreases ventilatory response to CO2 but not load compensation. Chest; 84:695–698

    Article  PubMed  CAS  Google Scholar 

  25. Krachman SL, D'Alonzo GE, Criner GJ (1995) Sleep in the intensive care unit. Chest 107:1713–1720

    Article  PubMed  CAS  Google Scholar 

  26. Horne JA (1985) Sleep function, with particular reference to sleep deprivation. Ann Clin Res 17:199–208

    PubMed  CAS  Google Scholar 

  27. Brown R, Price RJ, King MG, Husband AJ (1989) Interleukin-1 beta and muramyl dipeptide can prevent decreased antibody response associated with sleep deprivation. Brain Behav Immun 3:320–330

    Article  PubMed  CAS  Google Scholar 

  28. Merskey H, Bugduk N (1994) Classification of chronic pain. Descriptions of Chronic Pain Syndromes and Definitions of Pain Terms. 2nd ed. Seattle, WA: IASP Press.

  29. Middleton C (2003) Understanding the physiological effects of unrelieved pain. Nurs Times 99:28–31

    PubMed  Google Scholar 

  30. Epstein J, Breslow MJ (1999) The stress response of critical illness. Crit Care Clin; 15:17–33

    Article  PubMed  CAS  Google Scholar 

  31. Lewis KS, Whipple JK, Michael KA, Quebbeman EJ (1994) Effect of analgesic treatment on the physiological consequences of acute pain. Am J Hosp Pharm 51:1539–1554

    PubMed  CAS  Google Scholar 

  32. Gust R, Pecher S, Gust A, Hoffmann V, Bohrer H, Martin E (1999) Effect of patient-controlled analgesia on pulmonary complications after coronary artery-bypass grafting. Crit Care Med 27:2218–2223

    Article  PubMed  CAS  Google Scholar 

  33. Desai PM (1999) Pain management and pulmonary dysfunction. Crit Care Clin 15:151–166

    Article  PubMed  CAS  Google Scholar 

  34. Clark F, Gilbert HC (2001) Regional analgesia in the intensive care unit. Principles and practice. Crit Care Clin 17:943–966

    Article  PubMed  CAS  Google Scholar 

  35. Tobias JD (1994) Continuous femoral nerve block to provide analgesia following femur fracture in a paediatric ICU population. Anaesth Intensive Care 22:616–618

    PubMed  CAS  Google Scholar 

  36. Bosenberg A (2004) Pediatric regional anesthesia update. Paediatr Anaesth 14:398–402

    Article  PubMed  Google Scholar 

  37. Birmingham PK, Wheeler M, Suresh S, Dsida RM, Rae BR, Obrecht J, Andreoni VA, Hall SC, Cote CJ (2003) Patient-controlled epidural analgesia in children: can they do it? Anesth Analg 96:686–691

    PubMed  Google Scholar 

  38. McDonald AJ, Cooper MG (2001) Patient-controlled analgesia: an appropriate method of pain control in children. Paediatric Drugs 3:273–284

    Article  PubMed  CAS  Google Scholar 

  39. Beaulieu P (1998) Age and opioid patient-controlled analgesia use. Anaesthesia 53:208

    PubMed  CAS  Google Scholar 

  40. Monitto CL, Greenberg RS, Kost-Byerly S, Wetzel R, Billett C, Lebet RM, Yaster M (2000) The safety and efficacy of parent-/nurse-controlled analgesia in patients less than six years of age. Anesth Analg 91:573–579

    Article  PubMed  CAS  Google Scholar 

  41. Breau LM, Finley GA, McGrath PJ, Camfield CS (2002) Validation of the Non-communicating Children's Pain Checklist-Postoperative Version. Anesthesiology 96:528–535

    Article  PubMed  Google Scholar 

  42. Grunau RV, Johnston CC, Craig KD (1990) Neonatal facial and cry responses to invasive and non-invasive procedures. Pain 42:295–305

    Article  PubMed  CAS  Google Scholar 

  43. Stevens B, Johnston C, Petryshen P, Taddio A (1996) Premature Infant Pain Profile: development and initial validation. Clin J Pain 12:13–22

    Article  PubMed  CAS  Google Scholar 

  44. Beyer JE, Denyes MJ, Villarruel AM (1992) The creation, validation, and continuing development of the Oucher: a measure of pain intensity in children. J Pediatr Nurs 7:335–346

    PubMed  CAS  Google Scholar 

  45. Bieri D, Reeve RA, Champion GD, Addicoat L, Ziegler JB (1990) The Faces Pain Scale for the self-assessment of the severity of pain experienced by children: development, initial validation, and preliminary investigation for ratio scale properties. Pain 41:139–150

    Article  PubMed  CAS  Google Scholar 

  46. Wong DL, Baker CM (1988) Pain in children: comparison of assessment scales. Pediatr Nurs 14:9–17

    PubMed  CAS  Google Scholar 

  47. Chambers CT, Giesbrecht K, Craig KD, Bennett SM, Huntsman E (1999) A comparison of faces scales for the measurement of pediatric pain: children's and parents' ratings. Pain 83:25–35

    Article  PubMed  CAS  Google Scholar 

  48. Berde CB, Sethna NF (2002) Analgesics for the treatment of pain in children. N Engl J Med 347:1094–1103

    Article  PubMed  CAS  Google Scholar 

  49. Lynn A, Nespeca MK, Bratton SL, Strauss SG, Shen DD (1998) Clearance of morphine in postoperative infants during intravenous infusion: the influence of age and surgery. Anesth Analg 86:958–963

    Article  PubMed  CAS  Google Scholar 

  50. Arnold JH, Truog RD, Orav EJ, Scavone JM, Hershenson MB (1990) Tolerance and dependence in neonates sedated with fentanyl during ECMO. Anesthesiology; 73:36–40

    Google Scholar 

  51. Katz R, Kelly HW, Hsi A (1994) Prospective study on the occurrence of withdrawal in critically ill children who receive fentanyl by continuous infusion. Crit Care Med 22:763–767

    Article  PubMed  CAS  Google Scholar 

  52. Franck LS, Vilardi J, Durand D, Powers R (1998) Opioid withdrawal in neonates after continuous infusions of morphine or fentanyl during extracorporeal membrane oxygenation. Am J Crit Care 7:364–369

    Google Scholar 

  53. Egan TD, Lemmens HJ, Fiset P, Hermann DJ, Muir KT, Stanski DR, Shafer SL (1993) The pharmacokinetics of the new short-acting opioid remifentanil (GI87084B) in healthy adult male volunteers. Anesthesiology 79:881–892

    Article  PubMed  CAS  Google Scholar 

  54. Tobias JD: Remifentanil (1998) Applications in the Pediatric ICU Population. Amer J Pain Manage 8:114–117

    Google Scholar 

  55. Korpela R, Korvenoja P, Meretoja OA (1999) Morphine-sparing effect of acetaminophen in pediatric day-case surgery. Anesthesiology 91:442–447

    Article  PubMed  CAS  Google Scholar 

  56. Schug SA, Sidebotham DA, McGuinnety M, Thomas J, Fox L (1998) Acetaminophen as an adjunct to morphine by patient-controlled analgesia in the management of acute postoperative pain. Anesth Analg 87:368–372

    Article  PubMed  CAS  Google Scholar 

  57. Kollef MH, Levy NT, Ahrens TS, Schaiff R, Prentice D, Sherman G (1998) The use of continuous IV sedation is associated with prolongation of mechanical ventilation. Chest 114:541–548

    Article  PubMed  CAS  Google Scholar 

  58. Kress JP, Pohlman AS, O'Connor MF, Hall JB (2000) Daily interruption of sedative infusions in critically ill patients undergoing mechanical ventilation. N Engl J Med 342:1471–1477

    Article  PubMed  CAS  Google Scholar 

  59. Kress JP, Gehlbach B, Lacy M, Pliskin N, Pohlman AS, Hall JB (2003) The long-term psychological effects of daily sedative interruption on critically ill patients. Am J Respir Crit Care Med 168:1457–1461

    Article  PubMed  Google Scholar 

  60. Randolph AG, Wypij D, Venkataraman ST, Hanson JH, Gedeit RG, Meert KL, Luckett PM, Forbes P, Lilley M, Thompson J, Cheifetz IM, Hibberd P, Wetzel R, Cox PN, Arnold JH; Pediatric Acute Lung Injury and Sepsis Investigators (PALISI) Network (2002) Effect of mechanical ventilator weaning protocols on respiratory outcomes in infants and children: a randomized controlled trial. JAMA 288:2561–2568

    Article  PubMed  Google Scholar 

  61. Devlin JW, Holbrook AM, Fuller HD (1997) The effect of ICU sedation guidelines and pharmacist interventions on clinical outcomes and drug cost. Ann Pharmacother 31:689–695

    PubMed  CAS  Google Scholar 

  62. Saich C, Manji M, Dyer I (1999) Effect of introducing a sedation guideline on sedative costs per bed day. Br J Anaesth 82:792–793P

    Google Scholar 

  63. Mascia MF, Koch M, Medicis JJ (2000) Pharmacoeconomic impact of rational use guidelines on the provision of analgesia, sedation, and neuromuscular blockade in critical care. Crit Care Med 28:2300–2306

    Article  PubMed  CAS  Google Scholar 

  64. Ambuel B, Hamlett KW, Marx CM, Blumer JL (1992) Assessing distress in pediatric intensive care environments: The COMFORT Scale. J Pediatric Psychology 17:95–109

    Article  CAS  Google Scholar 

  65. Davidson AJ (2003) Depth of anaesthesia monitors in paediatric anaesthesia. In: John Keneally (eds). Australasian Anaesthesia 2003. Australian and New Zealand College of Anaesthetists

  66. De Deyne C, Struys M, Decruyenaere J, Creupelandt J, Hoste E, Colardyn F (1998) Use of continuous bispectral EEG monitoring to assess depth of sedation in ICU patients. Intensive Care Med 24:1294–1298

    Article  PubMed  Google Scholar 

  67. Mychaskiw G, Heath BJ, Eichhorn JH (2000) Falsely elevated bispectral index during deep hypothermic circulatory arrest. Br J Anaesth 8:798–800

    Article  Google Scholar 

  68. Berkenbosch JW, Fichter CR, Tobias JD (2002) The correlation of the bispectral index monitor with clinical sedation scores during mechanical ventilation in the pediatric intensive care unit. Anesth Analg 94:506–511

    Article  PubMed  Google Scholar 

  69. Crain N, Slonim A, Pollack MM (2002) Assessing sedation in the pediatric intensive care unit by using BIS and the COMFORT scale. Pediatr Crit Care Med 3:11–14

    Article  PubMed  Google Scholar 

  70. Simmons LE, Riker RR, Prato BS, Fraser GL (1999) Assessing sedation levels in mechanically ventilated ICU patients with the bispectral index and the sedation-agitation scale. Crit Care Med 27:1499–1504

    Article  PubMed  CAS  Google Scholar 

  71. Riker RR, Fraser GL, Simmons LE, Wilkins ML (2001) Validating the sedation-agitation scale with the bispectral index and visual analog scale in adult ICU patients after cardiac surgery. Intensive Care Med 27:853–858

    Article  PubMed  CAS  Google Scholar 

  72. Playfor SD (2005) The use of bispectral index monitors in paediatric intensive care. Crit Care 9:25–26

    Article  PubMed  Google Scholar 

  73. Ghoneim MM, Mewaldt SP (1990) Benzodiazepines and human memory: A Review. Anesthesiology 72:926–938

    Article  PubMed  CAS  Google Scholar 

  74. de Wildt SN, de Hoog M, Vinks AA, van der Giesen E, van den Anker JN (2003) Population pharmacokinetics and metabolism of midazolam in pediatric intensive care patients. Crit Care Med 31:1952–1958

    Article  PubMed  CAS  Google Scholar 

  75. Boulieu R, Lehmann B, Salord F, Fisher C, Morlet D (1998) Pharmacokinetics of midazolam and its main metabolite 1-hydroxymidazolam in intensive care patients. Eur J Drug Metab Pharmacokinet 23:255–258

    Article  PubMed  CAS  Google Scholar 

  76. Shelly MP, Mendel L, Park GR (1987) Failure of critically ill patients to metabolise midazolam. Anaesthesia 42:619–626

    Article  PubMed  CAS  Google Scholar 

  77. Hiller A, Olkkola KT, Isohanni P, Saarnivaara L (1990) Unconsciousness associated with midazolam and erythromycin. Br J Anaesth 65:826–828

    Article  PubMed  CAS  Google Scholar 

  78. Playfor SD, Thomas DA, Choonara I, Collier J, Jarvis A (2001) Parental perceptions of comfort during mechanical ventilation. Paediatr Anaesth 11:99–103

    Article  PubMed  CAS  Google Scholar 

  79. Ambrose C, Sale S, Howells R, Bevan C, Jenkins I, Weir P, Murphy P, Wolf A (2000) Intravenous clonidine infusion in critically ill children: dose-dependent sedative effects and cardiovascular stability. Br J Anaesth 84:794–796

    PubMed  CAS  Google Scholar 

  80. Maze M, Tranquill W (1991) Alpha-2 agonists: defining their role in clinical anesthesia. Anesthesiology 74:581–605

    Article  PubMed  CAS  Google Scholar 

  81. Parkinson L, Hughes J, Gill A, Billingham I, Ratcliffe J, Choonara I (1997) A randomized controlled trial of sedation in the critically ill. Paediatr Anaesth 7:405–410

    Article  PubMed  CAS  Google Scholar 

  82. Vasile B, Rasulo F, Candiani A, Latronico N (2003) The pathophysiology of propofol infusion syndrome: a simple name for a complex syndrome. Intensive Care Med 29:1417–1425

    Article  PubMed  Google Scholar 

  83. Wolf A, Weir P, Segar P, Stone J, Shield J (2001) Impaired fatty acid oxidation in propofol infusion syndrome. Lancet 357:606–607

    Article  PubMed  CAS  Google Scholar 

  84. Parke TJ, Stevens JE, Rice AS, Greenaway CL, Bray RJ, Smith PJ, Waldmann CS, Verghese C (1992) Metabolic acidosis and fatal myocardial failure after propofol infusion in children: five case reports. BMJ 305:613–616

    Article  PubMed  CAS  Google Scholar 

  85. MCA/CSM Current problems in Pharmacovigilance (2001) 27:10

  86. Hughes J, Gill A, Leach HJ, Nunn AJ, Billingham I, Ratcliffe J, Thornington R, Choonara I (1994) A prospective study of the adverse effects of midazolam on withdrawal in critically ill children. Acta Paediatr 83:1194–1199

    PubMed  CAS  Google Scholar 

  87. Fonsmark L, Rasmussen Y, Carl P (1999) Occurrence of withdrawal in critically ill sedated children. Crit Care Med 27:196–199

    Article  PubMed  CAS  Google Scholar 

  88. Kron RE, Finnegan LP, Kaplan SL, Litt M, Phoenix MD (1975) The assessment of behavioral change in infants undergoing narcotic withdrawal: comparative data from clinical and objective methods. Addict Dis 2:257–275

    PubMed  CAS  Google Scholar 

  89. Green M, Suffet F (1981) The Neonatal Narcotic Withdrawal Index: a device for the improvement of care in the abstinence syndrome. Am J Drug Alcohol Abuse 8:203–213

    Article  PubMed  CAS  Google Scholar 

  90. Tobias JD (2000) Tolerance, withdrawal, and physical dependency after long-term sedation and analgesia of children in the pediatric intensive care unit. Crit Care Med 28:2122–2132

    Article  PubMed  CAS  Google Scholar 

  91. Maldonado R (1997) Participation of noradrenergic pathways in the expression of opiate withdrawal: biochemical and pharmacological evidence. Neurosci Biobehav Rev 21:91–104

    Article  PubMed  CAS  Google Scholar 

  92. Carr DB, Todres ID (1994) Fentanyl infusion and weaning in the pediatric intensive care unit: Toward science-based practice. Crit Care Med 22:725–727

    Article  PubMed  CAS  Google Scholar 

  93. Tobias JD (1999) Subcutaneous administration of fentanyl and midazolam to prevent withdrawal after prolonged sedation in children. Crit Care Med 27:2262–2265

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Consortia

Corresponding author

Correspondence to Stephen Playfor.

Additional information

This article is discussed in the editorial available at: http://dx.doi.org/10.1007/s00134-006-0191-9

Financial support received: none.

Conflict of interest: none.

Appendix: Summary of recommendations

Appendix: Summary of recommendations

  1. 1.

    All critically ill children have the right to adequate relief of their pain. (grade of recommendation = D)

  2. 2.

    Any correctable environmental and physical factors causing discomfort should be addressed alongside the introduction of pharmacological agents. (grade of recommendation = D)

  3. 3.

    A normal pattern of sleep should be encouraged. Attention should be paid to lighting, environmental noise and temporal orientation of patients. (grade of recommendation = D)

  4. 4.

    Pain assessment should be performed regularly by using a scale appropriate to the age of the patient and routinely documented. The level of pain reported by the patient must be considered the current standard of analgesia. (grade of recommendation = C)

  5. 5.

    Patients who cannot communicate should be assessed for the presence of pain-related behaviours and physiological indicators of pain. (grade of recommendation = D)

  6. 6.

    A therapeutic plan for analgesia should be established for each patient and regularly reviewed. (grade of recommendation = D)

  7. 7.

    Continuous intravenous infusions of morphine or fentanyl are recommended for relief of severe pain. (grade of recommendation = C)

  8. 8.

    Non-steroidal anti-inflammatory drugs or paracetamol may be used as adjuncts to opioids in certain patients. (grade of recommendation = D)

  9. 9.

    Local and regional anaesthetic techniques should be considered. (grade of recommendation = D)

  10. 10.

    A patient controlled analgesia (PCA) device may be useful in older children. (grade of recommendation = D)

  11. 11.

    Adequate analgesia should be provided to all critically ill children regardless of the need for sedation. (grade of recommendation = D)

  12. 12.

    The level of sedation should be regularly assessed and documented using a sedation assessment scale, wherever possible using a validated scoring system such as the COMFORT scale. (grade of recommendation = B)

  13. 13.

    The desired level of sedation should be identified for each patient and should be regularly reassessed. (grade of recommendation = D)

  14. 14.

    Doses of sedative agents should be titrated to produce the desired level of sedation. (grade of recommendation = D)

  15. 15.

    Midazolam is the recommended agent for the majority of critically ill children requiring intravenous sedation. It should be given by continuous infusion. (grade of recommendation = C)

  16. 16.

    Clonidine given by continuous intravenous infusion may be used as an alternative sedative agent to midazolam. (grade of recommendation = D)

  17. 17.

    Propofol should not be used to provide continuous sedation in critically ill children. (grade of recommendation = C)

  18. 18.

    Early use of enteral sedative agents is recommended. (grade of recommendation = B)

  19. 19.

    The use of clinical guidelines for sedation is recommended. (grade of recommendation = C)

  20. 20.

    The potential for opioid and benzodiazepine withdrawal syndrome should be considered after 7 days of continuous therapy. When subsequently discontinued, the doses of these agents may need to be routinely tapered. (grade of recommendation = D)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Playfor, S., Jenkins, I., Boyles, C. et al. Consensus guidelines on sedation and analgesia in critically ill children. Intensive Care Med 32, 1125–1136 (2006). https://doi.org/10.1007/s00134-006-0190-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00134-006-0190-x

Keywords

Navigation