Skip to main content
Log in

The effects of mild germinal matrix-intraventricular haemorrhage on the developmental white matter microstructure of preterm neonates: a DTI study

  • Paediatric
  • Published:
European Radiology Aims and scope Submit manuscript

Abstract

Objectives

To evaluate white matter (WM) microstructural changes in preterm neonates (PN) with mild germinal matrix-intraventricular haemorrhage (mGMH-IVH) (grades I and II) and no other associated MRI abnormalities, and correlate them with gestational age (GA) and neurodevelopmental outcome.

Methods

Tract-based spatial-statistics (TBSS) was performed on DTI of 103 patients studied at term-equivalent age, to compare diffusional parameters (fractional anisotropy (FA), mean diffusivity (MD), radial diffusivity (RD), axial diffusivity (AD)) between mGMH-IVH neonates (24/103) and controls matched by GA at birth and sex. The relationship between DTI abnormalities, GA and neurodevelopmental outcome assessed with Griffiths’ Developmental Scale-Revised:0-2 was explored using TBSS and Spearman-correlation analysis (p < .05).

Results

Affected neonates had lower FA, higher RD and MD of the corpus callosum, limbic pathways and cerebellar tracts. Extremely preterm neonates (GA < 29 weeks) presented more severe microstructural impairment (higher RD and MD) in periventricular regions. Neonates of GA ≥ 29 weeks had milder WM alterations (lower FA), also in subcortical WM. DTI abnormalities were associated with poorer locomotor, eye-hand coordination and performance outcomes at 24 months.

Conclusions

WM microstructural changes occur in PN with mGMH-IVH with a GA-dependent selective vulnerability of WM regions, and correlate with adverse neurodevelopmental outcome at 24 months.

Key Points

DTI-TBSS analysis identifies WM microstructural changes in preterm neonates with mGMH-IVH.

Extremely preterm neonates with mGMH-IVH presented more severe impairment of WM microstructure.

Extremely preterm neonates with mGMH-IVH presented microstructural impairment of periventricular WM.

mGMH-IVH affects subcortical WM in preterm neonates with gestational age ≥ 29 weeks.

WM microstructural alterations are related to neurodevelopmental impairments at 24 months.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Abbreviations

AD:

Axial diffusivity

DTI:

Diffusion tensor imaging

FA:

Fractional anisotropy

GA:

Gestational age

GMH-IVH:

Germinal matrix–intraventricular haemorrhage

MD:

Mean diffusivity

mGMH-IVH:

Mild Germinal matrix–intraventricular haemorrhage

MRI:

Magnetic resonance imaging

PN:

Preterm neonates

RD:

Radial diffusivity

TBSS:

Tract-based spatial-statistics

WM:

White matter

References

  1. Volpe JJ (2008) Neurology of the Newborn, 5th edn. Elsevier, Philadelphia

    Google Scholar 

  2. Ramenghi LA, Fumagalli M, Groppo M et al (2011) Germinal matrix hemorrhage: intraventricular hemorrhage in very-low-birth-weight infants: the independent role of inherited thrombophilia. Stroke 42:1889–1893

    Article  PubMed  Google Scholar 

  3. Tortora D, Severino M, Malova M et al (2017) Differences in subependymal vein anatomy may predispose preterm infants to GMH-IVH. Arch Dis Child Fetal Neonatal Ed. https://doi.org/10.1136/archdischild-2017-312710

  4. Papile LA, Burstein R (1979) Intraventricular hemorrhage and hydrocephalus in premature newborns: a prospective study with CT. AJR Am J Roentgenol 132:631–635

    Article  PubMed  Google Scholar 

  5. Kidokoro H, Neil JJ, Inder TE (2013) New MR imaging assessment tool to define brain abnormalities in very preterm infants at term. AJNR Am J Neuroradiol 34:2208–2214

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Volpe JJ (2015) Impaired Neurodevelopmental Outcome After Mild Germinal Matrix-Intraventricular Hemorrhage. Pediatrics 136:1185–1187

    Article  PubMed  Google Scholar 

  7. Saigal S, Doyle LW (2008) An overview of mortality and sequelae of preterm birth from infancy to adulthood. Lancet 371:261–269

    Article  PubMed  Google Scholar 

  8. Parodi A, Morana G, Severino MS et al (2015) Low-grade intraventricular hemorrhage: is ultrasound good enough? J Matern Fetal Neonatal Med 28:2261–2264

    Article  PubMed  Google Scholar 

  9. Sannia A, Natalizia AR, Parodi A et al (2015) Different gestational ages and changing vulnerability of the premature brain. J Matern Fetal Neonatal Med 28:2268–2272

    Article  PubMed  Google Scholar 

  10. Ramenghi LA (2015) Germinal Matrix-Intraventricular Haemorrhage: still a very important brain lesion in premature infants! J Matern Fetal Neonatal Med 28:2259–2260

    Article  PubMed  Google Scholar 

  11. Mukerji A, Shah V, Shah PS (2015) Periventricular/intraventricular hemorrhage and neurodevelopmental outcomes: a meta-analysis. Pediatrics 136:1132–1143

    Article  PubMed  Google Scholar 

  12. Bolisetty S, Dhawan A, Abdel-Latif M, Bajuk B, Stack J, Lui K (2014) New South Wales and Australian Capital Territory Neonatal Intensive Care Units' Data Collection. Intraventricular hemorrhage and neurodevelopmental outcomes in extreme preterm infants. Pediatrics 133:55–62

    Article  PubMed  Google Scholar 

  13. Vasileiadis GT, Gelman N, Han VK et al (2004) Uncomplicated intraventricular hemorrhage is followed by reduced cortical volume at near-term age. Pediatrics 114:367–372

    Article  Google Scholar 

  14. Tam EW, Miller SP, Studholme C et al (2011) Differential effects of intraventricular hemorrhage and white matter injury on preterm cerebellar growth. J Pediatr 158:366–371

    Article  PubMed  Google Scholar 

  15. Volpe JJ (2009) Brain injury in premature infants: a complex amalgam of destructive and developmental disturbances. Lancet Neurol 8:110–124

    Article  PubMed  PubMed Central  Google Scholar 

  16. Ballabh P (2014) Pathogenesis and Prevention of Intraventricular Hemorrhage. Clin Perinatol 41:47–67

    Article  PubMed  Google Scholar 

  17. Beaulieu C (2002) The basis of anisotropic water diffusion in the nervous system - a technical review. NMR Biomed 15:435–455

    Article  PubMed  Google Scholar 

  18. Navarra R, Sestieri C, Conte E et al (2016) Perinatal MRI diffusivity is related to early assessment of motor performance in preterm neonates. Neuroradiol J 29:137–145

  19. Counsell SJ, Edwards AD, Chew ATM et al (2008) Specific relations between neurodevelopmental abilities and white matter microstructure in children born preterm. Brain 131:3201–3208

    Article  PubMed  Google Scholar 

  20. Tournier JD, Mori S, Leemans A (2011) Diffusion tensor imaging and beyond. Magn Reson Med 65:1532–1556

    Article  PubMed  PubMed Central  Google Scholar 

  21. Kuklisova-Murgasova M, Aljabar P, Srinivasan L et al (2011) A dynamic 4D probabilistic atlas of the developing brain. NeuroImage 54:2750–2763

    Article  PubMed  Google Scholar 

  22. Padilla N, Alexandrou G, Blennow M, Lagercrantz H, Ådén U (2015) Brain Growth Gains and Losses in Extremely Preterm Infants at Term. Cereb Cortex 25:1897–1905

    Article  PubMed  Google Scholar 

  23. Ball G, Counsell SJ, Anjari M et al (2010) An optimized tract-based spatial statistics protocol for neonates: applications to prematurity and chronic lung disease. NeuroImage 53:94–102

    Article  PubMed  Google Scholar 

  24. Van Tilborg E, Heijnen CJ, Benders MJ et al (2016) Impaired oligodendrocyte maturation in preterm infants: potential therapeutic targets. Prog Neurobiol 136:28–49

    Article  PubMed  Google Scholar 

  25. Griffiths R, Huntley M (2007) GMDS-R Griffiths mental development scales-revised 0–2 anni. In: Battaglia FM, Savoini M (eds) Manuale. Giunti O.S, Firenze

    Google Scholar 

  26. Back SA, Luo NL, Borenstein NS, Levine JM, Volpe JJ, Kinney HC (2001) Late oligodendrocyte progenitors coincide with the developmental window of vulnerability for human perinatal white matter injury. J Neurosci 21:1302–1312

    CAS  PubMed  Google Scholar 

  27. Counsell SJ, Shen Y, Boardman JP et al (2006) Axial and radial diffusivity in preterm infants who have diffuse white matter changes on magnetic resonance imaging at term-equivalent age. Pediatrics 117:376–386

    Article  PubMed  Google Scholar 

  28. Juliet PA, Frost EE, Balasubramaniam J, Del Bigio MR (2009) Toxic effect of blood components on perinatal rat subventricular zone cells and oligodendrocyte precursor cell proliferation, differentiation and migration in culture. J Neurochem 109:1285–1299

    Article  CAS  PubMed  Google Scholar 

  29. Ley D, Romantsik O, Vallius S et al (2016) High Presence of Extracellular Hemoglobin in the Periventricular White Matter Following Preterm Intraventricular Hemorrhage. Front Physiol 8 7:330

    Google Scholar 

  30. Warner DS, Sheng H, Batinic-Haberle I (2007) Oxidants, antioxidants and the ischemic brain. J Exp Biol 18:3221–3231

    Google Scholar 

  31. Supramaniam V, Vontell R, Srinivasan L, Wyatt-Ashmead J, Hagberg H, Rutherford M (2013) Microglia activation in the extremely preterm human brain. Pediatr Res 73:301–309

    Article  CAS  PubMed  Google Scholar 

  32. Burzynska AZ, Preuschhof C, Bäckman L et al (2010) Age-related differences in white matter microstructure: region-specific patterns of diffusivity. NeuroImage 49:2104–2112

    Article  CAS  PubMed  Google Scholar 

  33. Sen PN, Basser PJ (2005) A model for diffusion in white matter in the brain. Biophys J 89:2927–2938

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Liu X-B, Shen Y, Plane JM, Deng W (2013) Vulnerability of premyelinating oligodendrocytes to white-matter damage in neonatal brain injury. Neurosci Bull 29:229–238

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Brown GC, Bal-Price A (2003) Inflammatory neurodegeneration mediated by nitric oxide, glutamate, and mitochondria. Mol Neurobiol 27:325–355

    Article  CAS  PubMed  Google Scholar 

  36. Monier A, Adle-Biassette H, Delezoide AL, Evrard P, Gressens P, Verney C (2007) Entry and distribution of microglial cells in human embryonic and fetal cerebral cortex. J Neuropathol Exp Neurol 66:372–382

    Article  PubMed  Google Scholar 

  37. Billiards SS, Haynes RL, Folkerth RD et al (2006) Development of microglia in the cerebral white matter of the human fetus and infant. J Comp Neurol 497:199–208

    Article  PubMed  Google Scholar 

  38. Malavolti AM, Chau V, Brown-Lum M et al (2017) Association between corpus callosum development on magnetic resonance imaging and diffusion tensor imaging, and neurodevelopmental outcome in neonates born very preterm. Dev Med Child Neurol 59:433–440

    Article  PubMed  Google Scholar 

  39. Van Kooji BJM, de Vries LS, Ball G et al (2012) Neonatal Tract-Based Spatial Statistics Findings and Outcome in Preterm Infants. AJNR Am J Neuroradiol 33:188–194

    Article  Google Scholar 

  40. Takashi M, Masafumi M, Kei Y et al (2015) Low-grade intraventricular hemorrhage disrupts cerebellar white matter in preterm infants: evidence from diffusion tensor imaging. Neuroradiology 57:507–514

    Article  Google Scholar 

  41. Miall RC, Reckess GZ, Imamizu H (2001) The cerebellum coordinates eye and hand tracking movements. Nat Neurosci 4:638–644

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

The authors state that this work has not received any funding.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mariasavina Severino.

Ethics declarations

Guarantor

The scientific guarantor of this publication is Dr. Andrea Rossi.

Conflict of interest

The authors of this manuscript declare no relationships with any companies whose products or services may be related to the subject matter of the article.

Statistics and biometry

No complex statistical methods were necessary for this paper.

Informed consent

Written informed consent was provided by the parents of neonates.

Ethical approval

Institutional Review Board approval was obtained.

Methodology

• retrospective

• case-control study

• performed at one institution

Electronic supplementary material

ESM 1

(DOCX 62.5 kb)

ESM 2

(DOCX 106 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tortora, D., Martinetti, C., Severino, M. et al. The effects of mild germinal matrix-intraventricular haemorrhage on the developmental white matter microstructure of preterm neonates: a DTI study. Eur Radiol 28, 1157–1166 (2018). https://doi.org/10.1007/s00330-017-5060-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00330-017-5060-0

Keywords

Navigation