Skip to main content
Log in

PECAM-1: regulator of endothelial junctional integrity

  • Review
  • Published:
Cell and Tissue Research Aims and scope Submit manuscript

Abstract

PECAM-1 (also known as CD31) is a cellular adhesion and signaling receptor comprising six extracellular immunoglobulin (Ig)-like homology domains, a short transmembrane domain and a 118 amino acid cytoplasmic domain that becomes serine and tyrosine phosphorylated upon cellular activation. PECAM-1 expression is restricted to blood and vascular cells. In circulating platelets and leukocytes, PECAM-1 functions largely as an inhibitory receptor that, via regulated sequential phosphorylation of its cytoplasmic domain, limits cellular activation responses. PECAM-1 is also highly expressed at endothelial cell intercellular junctions, where it functions as a mechanosensor, as a regulator of leukocyte trafficking and in the maintenance of endothelial cell junctional integrity. In this review, we will describe (1) the functional domains of PECAM-1 and how they contribute to its barrier-enhancing properties, (2) how the physical properties of PECAM-1 influence its subcellular localization and its ability to influence endothelial cell barrier function, (3) various stimuli that initiate PECAM-1 signaling and/or function at the endothelial junction and (4) cross-talk of PECAM-1 with other junctional molecules, which can influence endothelial cell function.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Albelda SM, Muller WA, Buck CA, Newman PJ (1991) Molecular and cellular properties of PECAM-1 (endoCAM/CD31): a novel vascular cell-cell adhesion molecule. J Cell Biol 114:1059–1068

    Article  PubMed  CAS  Google Scholar 

  • Bagi Z, Frangos JA, Yeh JC, White CR, Kaley G, Koller A (2005) PECAM-1 mediates NO-dependent dilation of arterioles to high temporal gradients of shear stress. Arterioscler Thromb Vasc Biol 25:1590–1595

    Article  PubMed  CAS  Google Scholar 

  • Baldwin HS, Shen HM, Yan HC, Delisser HM, Chung A, Mickanin C, Trask T, Kirschbaum NE, Newman PJ, Albelda SM (1994) Platelet endothelial cell adhesion molecule-1 (PECAM-1/CD31): alternatively spliced, functionally distinct isoforms expressed during mammalian cardiovascular development. Development 120:2539–2553

    PubMed  CAS  Google Scholar 

  • Bazzoni G, Dejana E (2004) Endothelial cell-to-cell junctions: molecular organization and role in vascular homeostasis. Physiol Rev 84:869–901

    Article  PubMed  CAS  Google Scholar 

  • Bergom C, Paddock C, Gao C, Holyst T, Newman DK, Newman PJ (2008) An alternatively spliced isoform of PECAM-1 is expressed at high levels in human and murine tissues, and suggests a novel role for the C-terminus of PECAM-1 in cytoprotective signaling. J Cell Sci 121:1235–1242

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Biswas P, Canosa S, Schoenfeld D, Schoenfeld J, Li P, Cheas LC, Zhang J, Cordova A, Sumpio B, Madri JA (2006) PECAM-1 affects GSK-3β-mediated β-catenin phosphorylation and degradation. Am J Pathol 169:314–324

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Bixel MG, Li H, Petri B, Khandoga AG, Khandoga A, Zarbock A, Wolburg-Buchholz K, Wolburg H, Sorokin L, Zeuschner D, Maerz S, Butz S, Krombach F, Vestweber D (2010) CD99 and CD99L2 act at the same site as, but independently of, PECAM-1 during leukocyte diapedesis. Blood 116:1172–1184

    Article  PubMed  CAS  Google Scholar 

  • Buckley CD, Doyonnas R, Newton JP, Blystone SD, Brown EJ, Watt SM, Simmons DL (1996) Identification of alpha v beta 3 as a heterotypic ligand for CD31/PECAM-1. J Cell Sci 109(Pt 2):437–445

    PubMed  CAS  Google Scholar 

  • Busse R, Fleming I (2003) Regulation of endothelium-derived vasoactive autacoid production by hemodynamic forces. Trends Pharmacol Sci 24:24–29

    Article  PubMed  CAS  Google Scholar 

  • Cao G, O’Brien CD, Zhou Z, Sanders SM, Greenbaum JN, Makrigiannakis A, Delisser HM (2002) Involvement of human PECAM-1 in angiogenesis and in vitro endothelial cell migration. Am J Physiol Cell Physiol 282:C1181–C1190

    Article  PubMed  CAS  Google Scholar 

  • Carrithers M, Tandon S, Canosa S, Michaud M, Graesser D, Madri JA (2005) Enhanced susceptibility to endotoxic shock and impaired STAT3 signaling in CD31-deficient mice. Am J Pathol 166:185–196

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Cohen J (2002) The immunopathogenesis of sepsis. Nature 420:885–891

    Article  PubMed  CAS  Google Scholar 

  • Collins C, Guilluy C, Welch C, O’Brien ET, Hahn K, Superfine R, Burridge K, Tzima E (2012) Localized tensional forces on PECAM-1 elicit a global mechanotransduction response via the integrin-RhoA pathway. Curr Biol 22:2087–2094

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Conway DE, Breckenridge MT, Hinde E, Gratton E, Chen CS, Schwartz MA (2013) Fluid shear stress on endothelial cells modulates mechanical tension across VE-cadherin and PECAM-1. Curr Biol 23:1024–1030

    Article  PubMed  CAS  Google Scholar 

  • Dasgupta B, Dufour E, Mamdouh Z, Muller WA (2009) A novel and critical role for tyrosine 663 in platelet endothelial cell adhesion molecule-1 trafficking and transendothelial migration. J Immunol 182:5041–5051

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Deaglio S, Morra M, Mallone R, Ausiello CM, Prager E, Garbarino G, Dianzani U, Stockinger H, Malavasi F (1998) Human CD38 (ADP-ribosyl cyclase) is a counter-receptor of CD31, an Ig superfamily member. J Immunol 160:395–402

    PubMed  CAS  Google Scholar 

  • Dejana E (2004) Endothelial cell-cell junctions: happy together. Nat Rev Mol Cell Biol 5:261–270

    Article  PubMed  CAS  Google Scholar 

  • Dejana E, Orsenigo F, Lampugnani MG (2008) The role of adherens junctions and VE-cadherin in the control of vascular permeability. J Cell Sci 121:2115–2122

    Article  PubMed  CAS  Google Scholar 

  • Delisser HM, Christofidou-Solomidou M, Strieter RM, Burdick MD, Robinson CS, Wexler RS, Kerr JS, Garlanda C, Merwin JR, Madri JA, Albelda SM (1997) Involvement of endothelial PECAM-1/CD31 in angiogenesis. Am J Pathol 151:671–677

    PubMed Central  PubMed  CAS  Google Scholar 

  • Delisser HM, Yan HC, Newman PJ, Muller WA, Buck CA, Albelda SM (1993) Platelet/endothelial cell adhesion molecule-1 (CD31)-mediated cellular aggregation involves cell surface glycosaminoglycans. J Biol Chem 268:16037–16046

    PubMed  CAS  Google Scholar 

  • Dimaio TA, Sheibani N (2008) PECAM-1 isoform-specific functions in PECAM-1-deficient brain microvascular endothelial cells. Microvasc Res 75:188–201

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Dimaio TA, Wang S, Huang Q, Scheef EA, Sorenson CM, Sheibani N (2008) Attenuation of retinal vascular development and neovascularization in PECAM-1-deficient mice. Dev Biol 315:72–88

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Duncan GS, Andrew DP, Takimoto H, Kaufman SA, Yoshida H, Spellberg J, de la Luis PJ, Elia A, Wakeham A, Karan-Tamir B, Muller WA, Senaldi G, Zukowski MM, Mak TW (1999) Genetic evidence for functional redundancy of Platelet/Endothelial cell adhesion molecule-1 (PECAM-1): CD31-deficient mice reveal PECAM-1-dependent and PECAM-1-independent functions. J Immunol 162:3022–3030

    PubMed  CAS  Google Scholar 

  • Feaver RE, Gelfand BD, Wang C, Schwartz MA, Blackman BR (2010) Atheroprone hemodynamics regulate fibronectin deposition to create positive feedback that sustains endothelial inflammation. Circ Res 106:1703–1711

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Fernandez-Martin L, Marcos-Ramiro B, Bigarella CL, Graupera M, Cain RJ, Reglero-Real N, Jimenez A, Cernuda-Morollon E, Correas I, Cox S, Ridley AJ, Millan J (2012) Crosstalk between reticular adherens junctions and platelet endothelial cell adhesion molecule-1 regulates endothelial barrier function. Arterioscler Thromb Vasc Biol 32:e90–e102

    Article  PubMed  CAS  Google Scholar 

  • Ferrero E, Ferrero ME, Pardi R, Zocchi MR (1995) The platelet endothelial cell adhesion molecule-1 (PECAM1) contributes to endothelial barrier function. FEBS Lett 374:323–326

    Article  PubMed  CAS  Google Scholar 

  • Fleming I, Fisslthaler B, Dixit M, Busse R (2005) Role of PECAM-1 in the shear-stress-induced activation of Akt and the endothelial nitric oxide synthase (eNOS) in endothelial cells. J Cell Sci 118:4103–4111

    Article  PubMed  CAS  Google Scholar 

  • Flynn KM, Michaud M, Canosa S, Madri JA (2013) CD44 regulates vascular endothelial barrier integrity via a PECAM-1 dependent mechanism. Angiogenesis (in press)

  • Glen K, Luu NT, Ross E, Buckley CD, Rainger GE, Egginton S, Nash GB (2012) Modulation of functional responses of endothelial cells linked to angiogenesis and inflammation by shear stress: differential effects of the mechanotransducer CD31. J Cell Physiol 227:2710–2721

    Article  PubMed  CAS  Google Scholar 

  • Goel R, Schrank BR, Arora S, Boylan B, Fleming B, Miura H, Newman PJ, Molthen RC, Newman DK (2008) Site-specific effects of PECAM-1 on atherosclerosis in LDL receptor-deficient mice. Arterioscler Thromb Vasc Biol 28:1996–2002

    Google Scholar 

  • Goldberger A, Middleton KA, Oliver JA, Paddock C, Yan HC, Delisser HM, Albelda SM, Newman PJ (1994) Biosynthesis and processing of the cell adhesion molecule PECAM-1 includes production of a soluble form. J Biol Chem 269:17183–17191

    PubMed  CAS  Google Scholar 

  • Graesser D, Solowiej A, Bruckner M, Osterweil E, Juedes A, Davis S, Ruddle NH, Engelhardt B, Madri JA (2002) Altered vascular permeability and early onset of experimental autoimmune encephalomyelitis in PECAM-1-deficient mice. J Clin Invest 109:383–392

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Harada N, Masuda M, Fujiwara K (1995) Fluid flow and osmotic stress induce tyrosine phosphorylation of an endothelial cell 128 kDa surface glycoprotein. Biochem Biophys Res Commun 214:69–74

    Article  PubMed  CAS  Google Scholar 

  • Harrison M, Smith E, Ross E, Krams R, Segers D, Buckley CD, Nash GB, Rainger GE (2013) The role of platelet-endothelial cell adhesion molecule-1 in atheroma formation varies depending on the site-specific hemodynamic environment. Arterioscler Thromb Vasc Biol 33:694–701

    Article  PubMed  CAS  Google Scholar 

  • Harry BL, Sanders JM, Feaver RE, Lansey M, Deem TL, Zarbock A, Bruce AC, Pryor AW, Gelfand BD, Blackman BR, Schwartz MA, Ley K (2008) Endothelial cell PECAM-1 promotes atherosclerotic lesions in areas of disturbed flow in ApoE-deficient mice. Arterioscler Thromb Vasc Biol 28:2003–2008

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Hashimoto K, Kataoka N, Nakamura E, Hagihara K, Hatano M, Okamoto T, Kanouchi H, Minatogawa Y, Mohri S, Tsujioka K, Kajiya F (2011) Monocyte trans-endothelial migration augments subsequent transmigratory activity with increased PECAM-1 and decreased VE-cadherin at endothelial junctions. Int J Cardiol 149:232–239

    Article  PubMed  Google Scholar 

  • Ilan N, Cheung L, Pinter E, Madri JA (2000) Platelet-endothelial cell adhesion molecule-1 (CD31), a scaffolding molecule for selected catenin family members whose binding is mediated by different tyrosine and serine/threonine phosphorylation. J Biol Chem 275:21435–21443

    Article  PubMed  CAS  Google Scholar 

  • Jackson DE, Kupcho KR, Newman PJ (1997a) Characterization of phosphotyrosine binding motifs in the cytoplasmic domain of platelet/endothelial cell adhesion molecule-1 (PECAM-1) that are required for the cellular association and activation of the protein-tyrosine phosphatase, SHP-2. J Biol Chem 272:24868–24875

    Article  PubMed  CAS  Google Scholar 

  • Jackson DE, Ward CM, Wang R, Newman PJ (1997b) The protein-tyrosine phosphatase SHP-2 binds platelet/endothelial cell adhesion molecule-1 (PECAM-1) and forms a distinct signaling complex during platelet aggregation. Evidence for a mechanistic link between PECAM-1- and integrin-mediated cellular signaling. J Biol Chem 272:6986–6993

    Article  PubMed  CAS  Google Scholar 

  • Kirschbaum NE, Gumina RJ, Newman PJ (1994) Organization of the gene for human platelet/endothelial cell adhesion molecule-1 shows alternatively spliced isoforms and a functionally complex cytoplasmic domain. Blood 84:4028–4037

    PubMed  CAS  Google Scholar 

  • Kitazume S, Imamaki R, Ogawa K, Komi Y, Futakawa S, Kojima S, Hashimoto Y, Marth JD, Paulson JC, Taniguchi N (2010) Alpha2,6-sialic acid on platelet endothelial cell adhesion molecule (PECAM) regulates its homophilic interactions and downstream antiapoptotic signaling. J Biol Chem 285:6515–6521

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Kondo S, Scheef EA, Sheibani N, Sorenson CM (2007) PECAM-1 isoform-specific regulation of kidney endothelial cell migration and capillary morphogenesis. Am J Physiol Cell Physiol 292:C2070–C2083

    Article  PubMed  CAS  Google Scholar 

  • Kuckleburg CJ, Newman PJ (2013) Neutrophil proteinase 3 acts on protease-activated receptor-2 to enhance vascular endothelial cell barrier function. Arterioscler Thromb Vasc Biol 33:275–284

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Kumar V, Abbas A, Fausto N (2004) Robbins and Cotran Pathologic Basis of Disease. Saunders, Philadelphia

    Google Scholar 

  • Lampugnani MG, Corada M, Caveda L, Breviario F, Ayalon O, Geiger B, Dejana E (1995) The molecular organization of endothelial cell to cell junctions: differential association of plakoglobin, beta-catenin, and alpha-catenin with vascular endothelial cadherin (VE-cadherin). J Cell Biol 129:203–217

    Article  PubMed  CAS  Google Scholar 

  • Liu G, Place AT, Chen Z, Brovkovych VM, Vogel SM, Muller WA, Skidgel RA, Malik AB, Minshall RD (2012) ICAM-1-activated Src and eNOS signaling increase endothelial cell surface PECAM-1 adhesivity and neutrophil transmigration. Blood 120:1942–1952

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Liu Y, Bubolz AB, Shi Y, Newman PJ, Newman DK, Gutterman DD (2005) Peroxynitrite reduces the endothelium derived hyperpolarizing factor component of coronary flow-mediated dilation in PECAM-1-knock out mice. Am J Physiol Regul Integr Comp Physiol 290:R57–R65

    Google Scholar 

  • Maas M, Stapleton M, Bergom C, Mattson DL, Newman DK, Newman PJ (2005) Endothelial cell PECAM-1 confers protection against endotoxic shock. Am J Physiol Heart Circ Physiol 288:H159–H164

    Article  PubMed  CAS  Google Scholar 

  • Mamdouh Z, Chen X, Pierini LM, Maxfield FR, Muller WA (2003) Targeted recycling of PECAM from endothelial surface-connected compartments during diapedesis. Nature 421:748–753

    Article  PubMed  CAS  Google Scholar 

  • Mamdouh Z, Kreitzer GE, Muller WA (2008) Leukocyte transmigration requires kinesin-mediated microtubule-dependent membrane trafficking from the lateral border recycling compartment. J Exp Med 205:951–966

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Mamdouh Z, Mikhailov A, Muller WA (2009) Transcellular migration of leukocytes is mediated by the endothelial lateral border recycling compartment. J Exp Med 206:2795–2808

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Mehta D, Malik AB (2006) Signaling mechanisms regulating endothelial permeability. Physiol Rev 86:279–367

    Article  PubMed  CAS  Google Scholar 

  • Ming Z, Hu Y, Xiang J, Polewski P, Newman PJ, Newman DK (2011) Lyn and PECAM-1 function as interdependent inhibitors of platelet aggregation. Blood 117:3903–3906

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Muller WA, Weigl SA, Deng X, Phillips DM (1993) PECAM-1 is required for transendothelial migration of leukocytes. J Exp Med 178:449–460

    Article  PubMed  CAS  Google Scholar 

  • Newman PJ (1997) The biology of PECAM-1. J Clin Invest 100:S25–S29

    Article  PubMed  CAS  Google Scholar 

  • Newman PJ (1999) Switched at birth: a new family for PECAM-1. J Clin Invest 103:5–9

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Newman PJ, Berndt MC, Gorski J, White GC, Lyman S, Paddock C, Muller WA (1990) PECAM-1 (CD31) cloning and relation to adhesion molecules of the immunoglobulin gene superfamily. Science 247:1219–1222

    Article  PubMed  CAS  Google Scholar 

  • Newman PJ, Hillery CA, Albrecht R, Parise LV, Berndt MC, Mazurov AV, Dunlop LC, Zhang J, Rittenhouse SE (1992) Activation-dependent changes in human platelet PECAM-1: phosphorylation, cytoskeletal association, and surface membrane redistribution. J Cell Biol 119:239–246

    Article  PubMed  CAS  Google Scholar 

  • Newman PJ, Newman DK (2003) Signal transduction pathways mediated by PECAM-1: new roles for an old molecule in platelet and vascular cell biology. Arterioscler Thromb Vasc Biol 23:953–964

    Article  PubMed  CAS  Google Scholar 

  • Newton JP, Buckley CD, Jones EY, Simmons DL (1997) Residues on both faces of the first immunoglobulin fold contribute to homophilic binding sites of PECAM-1/CD31. J Biol Chem 272:20555–20563

    Article  PubMed  CAS  Google Scholar 

  • Newton JP, Hunter AP, Simmons DL, Buckley CD, Harvey DJ (1999) CD31 (PECAM-1) exists as a dimer and is heavily N-glycosylated. Biochem Biophys Res Commun 261:283–291

    Article  PubMed  CAS  Google Scholar 

  • Nourshargh S, Krombach F, Dejana E (2006) The role of JAM-A and PECAM-1 in modulating leukocyte infiltration in inflamed and ischemic tissues. J Leukoc Biol 80:714–718

    Article  PubMed  CAS  Google Scholar 

  • O’Brien CD, Cao G, Makrigiannakis A, Delisser HM (2004) Role of immunoreceptor tyrosine-based inhibitory motifs of PECAM-1 in PECAM-1-dependent cell migration. Am J Physiol Cell Physiol 287:C1103–C1113

    Article  PubMed  Google Scholar 

  • Osawa M, Masuda M, Harada N, Lopes RB, Fujiwara K (1997) Tyrosine phosphorylation of platelet endothelial cell adhesion molecule-1 (PECAM-1, CD31) in mechanically stimulated vascular endothelial cells. Eur J Cell Biol 72:229–237

    PubMed  CAS  Google Scholar 

  • Osawa M, Masuda M, Kusano K, Fujiwara K (2002) Evidence for a role of platelet endothelial cell adhesion molecule-1 in endothelial cell mechanosignal transduction: is it a mechanoresponsive molecule? J Cell Biol 158:773–785

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Otte LA, Bell KS, Loufrani L, Yeh JC, Melchior B, Dao DN, Stevens HY, White CR, Frangos JA (2009) Rapid changes in shear stress induce dissociation of a G{alpha}q/11/PECAM-1 Complex. J Physiol 587:2365–2373

    Google Scholar 

  • Paddock C, Lytle BL, Peterson FC, Holyst T, Newman PJ, Volkman BF, Newman DK (2011) Residues within a lipid-associated segment of the PECAM-1 cytoplasmic domain are susceptible to inducible, sequential phosphorylation. Blood 117:6012–6023

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Park S, Dimaio TA, Scheef EA, Sorenson CM, Sheibani N (2010) PECAM-1 regulates proangiogenic properties of endothelial cells through modulation of cell-cell and cell-matrix interactions. Am J Physiol Cell Physiol 299:C1468–C1484

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Piali L, Hammel P, Uherek C, Bachmann F, Gisler RH, Dunon D, Imhof BA (1995) CD31/PECAM-1 is a ligand for αvβ3 integrin involved in adhesion of leukocytes to endothelium. J Cell Biol 130:451–460

    Article  PubMed  CAS  Google Scholar 

  • Pober JS, Sessa WC (2007) Evolving functions of endothelial cells in inflammation. Nat Rev Immunol 7:803–815

    Article  PubMed  CAS  Google Scholar 

  • Privratsky JR, Paddock CM, Florey O, Newman DK, Muller WA, Newman PJ (2011) Relative contribution of PECAM-1 adhesion and signaling to the maintenance of vascular integrity. J Cell Sci 124:1477–1485

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • RayChaudhury A, Elkins M, Kozien D, Nakada MT (2001) Regulation of PECAM-1 in endothelial cells during cell growth and migration. Exp Biol Med (Maywood ) 226:686–691

    CAS  Google Scholar 

  • Robson P, Stein P, Zhou B, Schultz RM, Baldwin HS (2001) Inner cell mass-specific expression of a cell adhesion molecule (PECAM-1/CD31) in the mouse blastocyst. Dev Biol 234:317–329

    Article  PubMed  CAS  Google Scholar 

  • Sachs UJ, Andrei-Selmer CL, Maniar A, Weiss T, Paddock C, Orlova VV, Choi EY, Newman PJ, Preissner KT, Chavakis T, Santoso S (2007) The neutrophil-specific antigen CD177 is a counter-receptor for platelet endothelial cell adhesion molecule-1 (CD31). J Biol Chem 282:23603–23612

    Article  PubMed  CAS  Google Scholar 

  • Schenkel AR, Chew TW, Muller WA (2004) Platelet endothelial cell adhesion molecule deficiency or blockade significantly reduces leukocyte emigration in a majority of mouse strains. J Immunol 173:6403–6408

    Article  PubMed  CAS  Google Scholar 

  • Sharma P, Templin T, Grabham P (2013) Short term effects of gamma radiation on endothelial barrier function: uncoupling of PECAM-1. Microvasc Res 86:11–20

    Article  PubMed  CAS  Google Scholar 

  • Sheibani N, Newman PJ, Frazier WA (1997) Thrombospondin-1, a natural inhibitor of angiogenesis, regulates platelet-endothelial cell adhesion molecule-1 expression and endothelial cell morphogenesis. Mol Biol Cell 8:1329–1341

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Sheibani N, Sorenson CM, Frazier WA (1999) Tissue specific expression of alternatively spliced murine PECAM-1 isoforms. Dev Dyn 214:44–54

    Article  PubMed  CAS  Google Scholar 

  • Sheibani N, Sorenson CM, Frazier WA (2000) Differential modulation of cadherin-mediated cell-cell adhesion by platelet endothelial cell adhesion molecule-1 isoforms through activation of extracellular regulated kinases. Mol Biol Cell 11:2793–2802

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Sima AV, Stancu CS, Simionescu M (2009) Vascular endothelium in atherosclerosis. Cell Tissue Res 335:191–203

    Article  PubMed  CAS  Google Scholar 

  • Simmons DL, Walker C, Power C, Pigott R (1990) Molecular cloning of CD31, a putative intercellular adhesion molecule closely related to carcinoembryonic antigen. J Exp Med 171:2147–2152

    Article  PubMed  CAS  Google Scholar 

  • Stevens HY, Melchior B, Bell KS, Yun S, Yeh JC, Frangos JA (2008) PECAM-1 is a critical mediator of atherosclerosis. Dis Model Mech 1:175–181

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Stockinger H, Gadd SJ, Eher R, Majdic O, Schreiber W, Kasinrerk W, Strass B, Schnabl E, Knapp W (1990) Molecular characterization and functional analysis of the leukocyte surface protein CD31. J Immunol 145:3889–3897

    PubMed  CAS  Google Scholar 

  • Sullivan DP, Seidman MA, Muller WA (2013) Poliovirus Receptor (CD155) Regulates a Step in Transendothelial Migration between PECAM and CD99. Am J Pathol 182:1031–1042

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Sun J, Paddock C, Shubert J, Zhang HB, Amin K, Newman PJ, Albelda SM (2000) Contributions of the extracellular and cytoplasmic domains of platelet-endothelial cell adhesion molecule-1 (PECAM-1/CD31) in regulating cell-cell localization. J Cell Sci 113(Pt 8):1459–1469

    PubMed  CAS  Google Scholar 

  • Sun J, Williams J, Yan HC, Amin KM, Albelda SM, Delisser HM (1996a) Platelet endothelial cell adhesion molecule-1 (PECAM-1) homophilic adhesion is mediated by immunoglobulin-like domains 1 and 2 and depends on the cytoplasmic domain and the level of surface expression. J Biol Chem 271:18561–18570

    Article  PubMed  CAS  Google Scholar 

  • Sun QH, Delisser HM, Zukowski MM, Paddock C, Albelda SM, Newman PJ (1996b) Individually distinct Ig homology domains in PECAM-1 regulate homophilic binding and modulate receptor affinity. J Biol Chem 271:11090–11098

    Article  PubMed  CAS  Google Scholar 

  • Sun QH, Paddock C, Visentin GP, Zukowski MM, Muller WA, Newman PJ (1998) Cell surface glycosaminoglycans do not serve as ligands for PECAM-1. PECAM-1 is not a heparin-binding protein. J Biol Chem 273:11483–11490

    Article  PubMed  CAS  Google Scholar 

  • Taddei A, Giampietro C, Conti A, Orsenigo F, Breviario F, Pirazzoli V, Potente M, Daly C, Dimmeler S, Dejana E (2008) Endothelial adherens junctions control tight junctions by VE-cadherin-mediated upregulation of claudin-5. Nat Cell Biol 10:923–934

    Article  PubMed  CAS  Google Scholar 

  • Tai LK, Zheng Q, Pan S, Jin ZG, Berk BC (2005) Flow activates ERK1/2 and endothelial nitric oxide synthase via a pathway involving PECAM1, SHP2, and Tie2. J Biol Chem 280:29620–29624

    Article  PubMed  CAS  Google Scholar 

  • Thompson RD, Noble KE, Larbi KY, Dewar A, Duncan GS, Mak TW, Nourshargh S (2001) Platelet-endothelial cell adhesion molecule-1 (PECAM-1)-deficient mice demonstrate a transient and cytokine-specific role for PECAM-1 in leukocyte migration through the perivascular basement membrane. Blood 97:1854–1860

    Article  PubMed  CAS  Google Scholar 

  • Tourdot BE, Brenner MK, Keough KC, Holyst T, Newman PJ, Newman DK (2013) Immunoreceptor tyrosine-based inhibitory motif (ITIM)-mediated inhibitory signaling is regulated by sequential phosphorylation mediated by distinct nonreceptor tyrosine kinases: a case study involving PECAM-1. Biochemistry 52:2597–2608

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Tzima E, Irani-Tehrani M, Kiosses WB, Dejana E, Schultz DA, Engelhardt B, Cao G, DeLisser H, Schwartz MA (2005) A mechanosensory complex that mediates the endothelial cell response to fluid shear stress. Nature 437:426–431

    Article  PubMed  CAS  Google Scholar 

  • Vandenbroucke E, Mehta D, Minshall R, Malik AB (2008) Regulation of endothelial junctional permeability. Ann NY Acad Sci 1123:134–145

    Article  PubMed  CAS  Google Scholar 

  • Wang S, Dangerfield JP, Young RE, Nourshargh S (2005) PECAM-1, alpha6 integrins and neutrophil elastase cooperate in mediating neutrophil transmigration. J Cell Sci 118:2067–2076

    Article  PubMed  CAS  Google Scholar 

  • Wang Y, Repyak K, Sheibani N (2004) Expression pattern of alternatively spliced PECAM-1 isoforms in retinal vasculature. Mol Vis 10:103–111

    PubMed  CAS  Google Scholar 

  • Wang Y, Sheibani N (2002) Expression pattern of alternatively spliced PECAM-1 isoforms in hematopoietic cells and platelets. J Cell Biochem 87:424–438

    Article  PubMed  CAS  Google Scholar 

  • Wang Y, Sheibani N (2006) PECAM-1 isoform-specific activation of MAPK/ERKs and small GTPases: implications in inflammation and angiogenesis. J Cell Biochem 98:451–468

    Article  PubMed  CAS  Google Scholar 

  • Wang Y, Su X, Sorenson CM, Sheibani N (2003a) Modulation of PECAM-1 expression and alternative splicing during differentiation and activation of hematopoietic cells. J Cell Biochem 88:1012–1024

    Article  PubMed  CAS  Google Scholar 

  • Wang Y, Su X, Sorenson CM, Sheibani N (2003b) Tissue-specific distributions of alternatively spliced human PECAM-1 isoforms. Am J Physiol Heart Circ Physiol 284:H1008–H1017

    PubMed  CAS  Google Scholar 

  • Woodfin A, Voisin MB, Imhof BA, Dejana E, Engelhardt B, Nourshargh S (2009) Endothelial cell activation leads to neutrophil transmigration as supported by the sequential roles of ICAM-2, JAM-A, and PECAM-1. Blood 113:6246–6257

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Woodfin A, Voisin MB, Nourshargh S (2007) PECAM-1: a multi-functional molecule in inflammation and vascular biology. Arterioscler Thromb Vasc Biol 27:2514–2523

    Article  PubMed  CAS  Google Scholar 

  • Wu J, Sheibani N (2003) Modulation of VE-cadherin and PECAM-1 mediated cell-cell adhesions by mitogen-activated protein kinases. J Cell Biochem 90:121–137

    Article  PubMed  CAS  Google Scholar 

  • Yan HC, Baldwin HS, Sun J, Buck CA, Albelda SM, Delisser HM (1995) Alternative splicing of a specific cytoplasmic exon alters the binding characteristics of murine platelet/endothelial cell adhesion molecule-1 (PECAM-1). J Biol Chem 270:23672–23680

    Article  PubMed  CAS  Google Scholar 

  • Zhou Z, Christofidou-Solomidou M, Garlanda C, Delisser HM (1999) Antibody against murine PECAM-1 inhibits tumor angiogenesis in mice. Angiogenesis 3:181–188

    Article  PubMed  CAS  Google Scholar 

  • Zhu JX, Cao G, Williams JT, Delisser HM (2010) SHP-2 phosphatase activity is required for PECAM-1-dependent cell motility. Am J Physiol Cell Physiol 299:C854–C865

    Article  PubMed Central  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Peter J. Newman.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Privratsky, J.R., Newman, P.J. PECAM-1: regulator of endothelial junctional integrity. Cell Tissue Res 355, 607–619 (2014). https://doi.org/10.1007/s00441-013-1779-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00441-013-1779-3

Keywords

Navigation