Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Probiotics-supplemented feeding in extremely low-birth-weight infants

Abstract

Objective:

The objective of this trial was to test whether probiotic-supplemented feeding to extremely low-birth-weight (ELBW) infants will improve growth as determined by decreasing the percentage of infants with weight below the 10th percentile at 34 weeks postmenstrual age (PMA). Other important outcome measures, such as improving feeding tolerance determined by tolerating larger volume of feeding per day and reducing antimicrobial treatment days during the first 28 days from the initiation of feeding supplementation were also evaluated.

Study Design:

We conducted a multicenter randomized controlled double-blinded clinical study. The probiotics-supplementation (PS) group received Lactobacillus rhamnosus GG and Bifidobacterium infantis added to the first enteral feeding and continued once daily with feedings thereafter until discharge or until 34 weeks (PMA). The control (C) group received unsupplemented feedings. Infant weight and feeding volumes were recorded daily during the first 28 days of study period. Weights were also recorded at 34 weeks PMA.

Result:

A total of 101 infants were enrolled (PS 50 versus C 51). There was no difference between the two groups in the percentage of infants with weight below the 10th percentile at 34 weeks PMA (PS group 58% versus C group 60%, (P value 0.83)) or in the average volume of feeding during 28 days after study entry (PS group 59 ml kg−1 versus C group 71 ml kg−1, (P value 0.11)). Calculated growth velocity was higher in the PS group compared with the C group (14.9 versus 12.6 g per day, (P value 0.05)). Incidences of necrotizing enterocolitis (NEC), as well as mortality were similar between the two groups.

Conclusion:

Although probiotic-supplemented feedings improve growth velocity in ELBW infants, there was no improvement in the percentage of infants with growth delay at 34 weeks PMA. There were no probiotic-related adverse events reported.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3

Similar content being viewed by others

References

  1. Horbar JD, Badger GJ, Carpenter JH, Fanaroff AA, Kilpatrick S, LaCorte M et al. Trends in mortality and morbidity for very low birth weight infants 1991–1999. Pediatrics 2002; 110: 143–151.

    Article  PubMed  Google Scholar 

  2. Morley R, Lucas A . Influence of early diet on outcome in preterm infants. Acta Paediatr Suppl 1994; 405: 123–126.

    Article  CAS  PubMed  Google Scholar 

  3. Franz AR, Pohlandt F, Bode H, Mihatsch WA . Intrauterine, earlynonatal, and postdischarge growth neurodevelopmental outcome at 5.4 years in extremely preterm infants after intenstive neonatal nutritional support. Pediatrics 2009; 123: e101–e109.

    Article  PubMed  Google Scholar 

  4. Millar M, Wilks M, Costeloe K . Probiotics for preterm infants. Arch Dis Child Fetal Neonatal Ed 2003; 88: F354–F358.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Martin CR, Walker WA . Probiotics: role in pathophysiology and prevention in necrotizing enterocolitis. Semin Perinatol 2008; 32: 127–137.

    Article  PubMed  Google Scholar 

  6. Caplan M, Tamas J . Neonatal Necrotizing Enterocolitis: Possible role of probiotic supplementation. J pediatr Gastroenterol Nutr 2000; 30 (2): S18–S22.

    Article  PubMed  Google Scholar 

  7. Mack DR, Michail S, Wei S . Probiotics inhibit enteropathogenic E. coli adherence in vitro by inducing intestinal mucin gene expression. Am J Physiol 1999; 276: G950.

    Google Scholar 

  8. Mohan R, Koebnick C, Schildt J . Effect of Bifidobacterium lactis Bb12 supplementation on intestinal microbiota of preterm neonates: a double placebo controlled, randomized study. J Clin Microbiol 2006; 44: 4025–4031.

    Article  PubMed  PubMed Central  Google Scholar 

  9. Deplancke B, Gaskins HR . Microbial modulation of innate defense: goblet cells and the intestinal mucus layer. Am J Clin Nutr 2001; 73: 1131S–1141S.

    Article  CAS  PubMed  Google Scholar 

  10. Madsen K, Cornish A, Soper P . Probiotic bacteria enhance murine and human intestinal epithelial barrier function. Gastroenterology 2001; 121: 580–591.

    Article  CAS  PubMed  Google Scholar 

  11. Kennedy RJ, Kirk SJ, Gardiner KR . Mucosal barrier function and the commensal flora. Gut 2002; 50: 441–442.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Orrhage K, Nord CE . Factors controlling the bacterial colonization of the intestine in breastfed infants. Acta Paediatr 1999; (Suppl 88): 47–57.

    Article  Google Scholar 

  13. Panigrahi P, Gupta S, Gewolb IH . Occurrence of necrotizing enterocolitis may be dependent on patterns of bacterial adherence and intestinal colonization: studies in Caco-2 tissue culture and weanling rabbit models. Pediatr Res 1994; 36: 115–121.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Sudo N, Sawamura S, Tanaka K . The requirement of intestinal bacterial flora for the development of IgE production system fully susceptible to oral tolerance induction. J Immunol 1997; 159: 1739–1745.

    CAS  PubMed  Google Scholar 

  15. Fukushima Y, Kawata Y, Hara H . Effect of a probiotic formula on intestinal immunoglobulin A production in healthy children. Int J Food Microbiol 1998; 42: 39–44.

    Article  CAS  PubMed  Google Scholar 

  16. Schiffrin EJ, Rochat F, Link-Amster H . Immunomodulation of human blood cells following the ingestion of lactic acid bacteria. J Dairy Sci 1995; 78: 491–497.

    Article  CAS  PubMed  Google Scholar 

  17. Weng M, Walker WA, Sanderson IR . Butyrate regulates the expression of pathogen-triggered IL-8 in intestinal epithelia. Pediatr Res 2007; 62: 542–546.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Viljanen M, Kuitunen M, Haahtela T . Probiotic effects on faecal inflammatory markers and on faecal IgA in food allergic atopic eczema/dermatitis syndrome infants. Pediatr Allergy Immunol 2005; 16: 65–71.

    Article  PubMed  Google Scholar 

  19. Marin ML, Tejada-Simon MV, Lee JH . Stimulation of cytokine production in clonal macrophages and T-cell models by Streptococcus thermophilus: comparison with Bifidobacterium sp. and Lactobaillus bulgarius. J Food Prot 1998; 61: 859–864.

    Article  CAS  PubMed  Google Scholar 

  20. Murch SH . Toll of allergy reduced by probiotics. Lancet 2001; 357: 1057–1059.

    Article  CAS  PubMed  Google Scholar 

  21. Klinman DM, Yi AK, Beaucage SL . CpG motifs present in bacteria DNA rapidly induce lymphocytes to secrete IL-6, IL-12 and interferon gamma. Proc Natl Acad Sci USA 1996; 93: 2879–2883.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Fujii T, Ohtsuka Y, Lee T . Bifidobacterium breve enhances transforming growth factor betal signaling by regulating Smad7 expression in preterm infants. J Pediatr gastroenterol Nutr 2006; 43: 83–88.

    Article  PubMed  Google Scholar 

  23. Takeda K, Suzuki T, Shimada SI . Interleukin-12 involved in the enhancement of human natural killer cell activity by Lactobacillus casei Shirota. Clin Exp Immunol 2006; 146: 109–115.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Kitajima H, Sumida Y, Tanaka R, Yuki N, Takayama H, Fujimura M . Early administration of Bifidobacterium breve to preterm infants: randomized controlled trial. Arch Dis Child Fetal Neonatal Ed 1997; 76: f101–f107.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Rouge C, Piloquet H, Butel M, Rochat F, Ferraris L . Oral supplementation with probiotics in very low birth weight preterm infants: a randomized, double-blind, placebo-controlled trial. Am J clin Nutr 2009; 89: 1828–1835.

    Article  CAS  PubMed  Google Scholar 

  26. Dani C, Biadaioli R, Bertini G, Martelli E, Rubaltelli F . Probiotics feeding in prevention of urinary tract infection, bacterial sepsis and necrotizing enterocolitis in preterm infants. Biol Neonate 2002; 82: 103–108.

    Article  CAS  PubMed  Google Scholar 

  27. Costalos C, Skouteri V, Gounaris A . Enteral feeding of premature neonates with Saccharomyces boulardii. Early Hum Dev 2003; 74: 89–96.

    Article  CAS  PubMed  Google Scholar 

  28. Bin-Nun A, Bromiker R, Wilschanski M, Kaplan M, Rudensky B, Caplan M et al. Oral probiotics prevent necrotizing enterocolitis in very low birth weight neonates. J Pediatr 2005; 147: 192–196.

    Article  PubMed  Google Scholar 

  29. Lin HC, Su BH, Chen AC . Oral probiotics reduce the incidence and severity of necrotizing enterocolitis in very low birth weight infants. Pediatrics 2005; 115: 1–4.

    Article  PubMed  Google Scholar 

  30. Manzoni P, Mostert M, Leonessa ML . Oral supplementation with Lactobacillus casei subspecies in preterm neonates: a randomized study. Clin Infect Dis 2006; 42: 1735–1742.

    Article  CAS  PubMed  Google Scholar 

  31. Startiki Z, Costalos C, Sevastiadou S . The effect of bifidobacter supplemented bovine milk on intestinal permeability of preterm infants. Early Hum Dev 2007; 83: 575–579.

    Article  Google Scholar 

  32. Lin HC, Hsu CH, Chen HL, Chung MY, Hsu JF, Lien RI et al. Oral robiotics prevent necrotizing enterocolitis in very low birth weight preterm infants: A multicenter randomized controlled trial. Pediatrics 2008; 122: 693–700.

    Article  PubMed  Google Scholar 

  33. Samanta M, Sarkar M, Ghosh P . Prophylactic probiotics for prevention of necrotizing enterocolitis in very low birth weight newborns. J Trop Pediatr 2009; 55 (2): 128–131.

    Article  PubMed  Google Scholar 

  34. Deshpande G, Rao S, Patole S, Bulsara M . Updated meta-analysis of probiotics for preventing necrotizing enterocolitis in preterm neonates. Pediatrics 2010; 125 (5): 921–930.

    Article  PubMed  Google Scholar 

  35. Soll R . Probiotic: are we ready for routine use? Pediatrics 2010; 125 (5): 1071–1072.

    Article  PubMed  Google Scholar 

  36. Patel A, Engstrom J, Meier P, Kimura R . Accuracy of methods for calculating postnatal growth velocity for extremely low birth weight infants. Pediatrics 2005; 116 (6): 1466–1473.

    Article  PubMed  Google Scholar 

  37. Kunz AN, Fairchik MP, Noel JM . Lactobacillus sepsis associated with probiotic therapy. Pediatrics 2005; 115 (1): 178–181.

    Article  Google Scholar 

  38. Sullivan A, Nord CE . Probiotic lactobacilli and bacteraemia in Stockholm. Scand J Infect Dis 2006; 38 (5): 327–331.

    Article  PubMed  Google Scholar 

  39. Presterl E, Kneifel W, Mayer HK, Zehetgruber M, makristathis A, Graninger W . Endocarditis by Lactobacillus rhamnosus due to yogurt ingestion? Scand J Infect Dis 2001; 33 (9): 710–714.

    Article  CAS  PubMed  Google Scholar 

  40. Ohishi A, Takahashi S, Ito Y, Ohishi Y, Tsukamoto K, Nanba Y et al. Bifidobacterium septicemia associated with postoperative probiotic therapy in a neonate with omphalocele. J Peds 2010; 156 (4): 679–681.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M Al-Hosni.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Al-Hosni, M., Duenas, M., Hawk, M. et al. Probiotics-supplemented feeding in extremely low-birth-weight infants. J Perinatol 32, 253–259 (2012). https://doi.org/10.1038/jp.2011.51

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/jp.2011.51

Keywords

This article is cited by

Search

Quick links