Skip to main content
Log in

Vancomycin

Pharmacokinetics and Administration Regimens in Neonates

  • Review Article
  • Published:
Clinical Pharmacokinetics Aims and scope Submit manuscript

Abstract

This review describes the use of vancomycin in neonates over the last three decades. Given the relation of late-onset neonatal septicaemia to outcome and the increase in coagulase-negative staphylococcal infection as causative organism, vancomycin remains an important antibacterial in the neonatal intensive care unit.

The pharmacokinetic behaviour of vancomycin in neonates can be adequately described by a one- or two-compartment model and is mainly determined by postconceptional age and renal function. In neonates, a patent ductus arteriosus as well as treatment with indomethacin or extracorporeal membrane oxygenation (ECMO) leads to an increase in volume of distribution and a decrease in clearance.

Microbiological studies in vitro have shown that an increase in vancomycin concentrations above the minimum inhibitory concentration does not result in more effective killing. The microbiological and clinical efficacy of vancomycin in neonates has only been studied explicitly in a restricted number of patients. There are no definitive data relating serum concentrations to effect in this patient group. Vancomycin-related nephrotoxicity and ototoxicity in neonates is rare, and no clear relation to serum concentrations has been demonstrated.

Based on the pharmacokinetic profile of vancomycin in neonates, several administration regimens have been constructed. Recent guidelines have suggested that dosage can be independent of gestational age or postconceptional age in neonates without renal failure. In patients with renal failure, therapy can be adequately tailored by using a regimen based on serum creatinine.

The usefulness of routine monitoring of peak serum concentrations is doubtful based on the current literature. Recent research demonstrates a shift towards taking only routine trough serum concentrations in order to optimise efficacy. Patients with renal failure and other special subpopulations, such as patients exposed to ECMO or indomethacin, need to be monitored more closely.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Table I
Table II
Table III
Table IV
Table V

Similar content being viewed by others

Notes

  1. 1 Definitions for age groups in this article: neonate, newborn child with a postnatal age of less than 28 days; infant, postnatal age of less than 1 year; child, older than 1 year.

References

  1. Ronnestad A, Abrahamsen TG, Gaustad P, et al. Blood culture isolates during 6 years in a tertiary neonatal intensive care unit. Scand J Infect Dis 1998; 30: 245–51

    PubMed  CAS  Google Scholar 

  2. Hall SL. Coagulase-negative staphylococcal infections in neonates. Pediatr Infect Dis J 1991; 10: 57–67

    PubMed  CAS  Google Scholar 

  3. Cordero L, Sananes M, Ayers LW. Bloodstream infections in a neonatal intensive-care unit: 12 years’ experience with an antibiotic control program. Infect Control Hosp Epidemiol 1999; 20: 242–6

    PubMed  CAS  Google Scholar 

  4. Stoll BJ, Gordon T, Korones SB, et al. Late-onset sepsis in very low birth weight neonates: a report from the National Institute of Child Health and Human Development Neonatal Research Network. J Pediatr 1996; 129: 63–71

    PubMed  CAS  Google Scholar 

  5. McDougal A, Ling EW, Levine M. Vancomycin pharmacokinetics and dosing in premature neonates. Ther Drug Monit 1995; 17: 319–26

    PubMed  CAS  Google Scholar 

  6. Kallman J, Kihlstrom E, Sjoberg L, et al. Increase of staphylococci in neonatal septicaemia: a fourteen-year study. Acta Paediatr 1997; 86: 533–8

    PubMed  CAS  Google Scholar 

  7. Gray JE, Richardson DK, McCormick MC, et al. Coagulase-negative staphylococcal bacteremia among very low birth weight infants: relation to admission illness severity, resource use, and outcome. Pediatrics 1995; 95: 225–30

    PubMed  CAS  Google Scholar 

  8. Freeman J, Goldmann DA, Smith NE, et al. Association of intravenous lipid emulsion and coagulase-negative staphylococcal bacteremia in neonatal intensive care units. N Engl J Med 1990; 323: 301–8

    PubMed  CAS  Google Scholar 

  9. Freeman J, Platt R, Epstein MF, et al. Birth weight and length of stay as determinants of nosocomial coagulase-negative staphylococcal bacteremia in neonatal intensive care unit populations: potential for confounding. Am J Epidemiol 1990; 132: 1130–40

    PubMed  CAS  Google Scholar 

  10. Freeman J, Epstein MF, Smith NE, et al. Extra hospital stay and antibiotic usage with nosocomial coagulase-negative staphylococcal bacteremia in two neonatal intensive care unit populations. Am J Dis Child 1990; 144: 324–9

    PubMed  CAS  Google Scholar 

  11. Spears RL, Koch R. The use of vancomycin in pediatrics. Antibiotics Annu 1959–1960: 798-803

  12. Patrick CC. Coagulase-negative staphylococci: pathogens with increasing clinical significance. J Pediatr 1990; 116: 497–507

    PubMed  CAS  Google Scholar 

  13. Baumgart S, Hall SE, Campos JM, et al. Sepsis with coagulase-negative staphylococci in critically ill newborns. Am J Dis Child 1983; 137: 461–3

    PubMed  CAS  Google Scholar 

  14. Munson DP, Thompson TR, Johnson DE, et al. Coagulase-negative staphylococcal septicemia: experience in a newborn intensive care unit. J Pediatr 1982; 101: 602–5

    PubMed  CAS  Google Scholar 

  15. Price EH, Brain A, Dickson JA. An outbreak of infection with a gentamicin and methicillin-resistant Staphylococcus aureus in a neonatal unit. J Hosp Infect 1980; 1: 221–8

    PubMed  CAS  Google Scholar 

  16. Matzke GR, Zhanel GG, Guay DR. Clinical pharmacokinetics of vancomycin. Clin Pharmacokinet 1986; 11(4): 257–82

    PubMed  CAS  Google Scholar 

  17. Reed MD, Kliegman RM, Weiner JS, et al. The clinical pharmacology of vancomycin in seriously ill preterm infants. Pediatr Res 1987; 22: 360–3

    PubMed  CAS  Google Scholar 

  18. Pawlotsky F, Thomas A, Kergueris MF, et al. Constant rate infusion of vancomycin in premature neonates: a new dosage schedule. Br J Clin Pharmacol 1998; 46: 163–7

    PubMed  CAS  Google Scholar 

  19. James A, Koren G, Milliken J, et al. Vancomycin pharmacokinetics and dose recommendations for preterm infants. Antimicrob Agents Chemother 1987; 31: 52–4

    PubMed  CAS  Google Scholar 

  20. Lisby-Sutch SM, Nahata MC. Dosage guidelines for the use of vancomycin based on its pharmacokinetics in infants. Eur J Clin Pharmacol 1988; 35: 637–42

    PubMed  CAS  Google Scholar 

  21. Gous AG, Dance MD, Lipman J, et al. Changes in vancomycin pharmacokinetics in critically ill infants. Anaesth Intensive Care 1995; 23: 678–82

    PubMed  CAS  Google Scholar 

  22. Jarrett RV, Marinkovich GA, Gayle EL, et al. Individualized pharmacokinetic profiles to compute vancomycin dosage and dosing interval in preterm infants. Pediatr Infect Dis J 1993; 12: 156–7

    PubMed  CAS  Google Scholar 

  23. Grimsley C, Thomson AH. Pharmacokinetics and dose requirements of vancomycin in neonates. Arch Dis Child Fetal Neonatal Ed 1999; 81: F221–7

    PubMed  CAS  Google Scholar 

  24. Leonard MB, Koren G, Stevenson DK, et al. Vancomycin pharmacokinetics in very low birth weight neonates. Pediatr Infect Dis J 1989; 8: 282–6

    PubMed  CAS  Google Scholar 

  25. Fofah OO, Karmen A, Piscitelli J, et al. Failure of prediction of peak serum vancomycin concentrations from trough values in neonates. Pediatr Infect Dis J 1999; 18: 299–300

    PubMed  CAS  Google Scholar 

  26. Naqvi SH, Keenan WJ, Reichley RM, et al. Vancomycin pharmacokinetics in small, seriously ill infants. Am J Dis Child 1986; 140: 107–10

    PubMed  CAS  Google Scholar 

  27. Rodvold KA, Gentry CA, Plank GS, et al. Bayesian forecasting of serum vancomycin concentrations in neonates and infants. Ther Drug Monit 1995; 17: 239–46

    PubMed  CAS  Google Scholar 

  28. Seay RE, Brundage RC, Jensen PD, et al. Population pharmacokinetics of vancomycin in neonates [published erratum appears in Clin Pharmacol Ther 1995 Aug; 58 (2): 142]. Clin Pharmacol Ther 1994; 56: 169–75

    PubMed  CAS  Google Scholar 

  29. Silva R, Reis E, Bispo MA, et al. The kinetic profile of vancomycin in neonates. J Pharm Pharmacol 1998; 50: 1255–60

    PubMed  CAS  Google Scholar 

  30. Buck ML. Vancomycin pharmacokinetics in neonates receiving extracorporeal membrane oxygenation. Pharmacotherapy 1998; 18: 1082–6

    PubMed  CAS  Google Scholar 

  31. Asbury WH, Darsey EH, Rose WB, et al. Vancomycin pharmacokinetics in neonates and infants: a retrospective evaluation. Ann Pharmacother 1993; 27: 490–6

    PubMed  CAS  Google Scholar 

  32. Gross JR, Kaplan SL, Kramer WG, et al. Vancomycin pharmacokinetics in premature infants. Pediatr Pharmacol (New York) 1985; 5: 17–22

    CAS  Google Scholar 

  33. Alpert G, Campos JM, Harris MC, et al. Vancomycin dosage in pediatrics reconsidered. Am J Dis Child 1984; 138: 20–2

    PubMed  CAS  Google Scholar 

  34. Kildoo CW, Lin LM, Gabriel MH, et al. Vancomycin pharmacokinetics in infants: relationship to postconceptional age and serum creatinine. Dev Pharmacol Ther 1989; 14: 77–83

    PubMed  CAS  Google Scholar 

  35. Schaad UB, McCracken Jr GH, Nelson JD. Clinical pharmacology and efficacy of vancomycin in pediatric patients. J Pediatr 1980; 96: 119–26

    PubMed  CAS  Google Scholar 

  36. Burstein AH, Gal P, Forrest A. Evaluation of a sparse sampling strategy for determining vancomycin pharmacokinetics in preterm neonates: application of optimal sampling theory. Ann Pharmacother 1997; 31: 980–3

    PubMed  CAS  Google Scholar 

  37. Schaible DH, Rocci Jr ML, Alpert GA, et al. Vancomycin pharmacokinetics in infants: relationships to indices of maturation. Pediatr Infect Dis 1986; 5: 304–8

    PubMed  CAS  Google Scholar 

  38. Capparelli EV, Lane JR, Romanowski GL, et al. The influences of renal function and maturation on vancomycin elimination in newborns and infants. J Clin Pharmacol 2001; 41: 927–34

    PubMed  CAS  Google Scholar 

  39. Spivey JM, Gal P. Vancomycin pharmacokinetics in neonates [letter]. Am J Dis Child 1986; 140: 859

    PubMed  CAS  Google Scholar 

  40. Amaker RD, DiPiro JT, Bhatia J. Pharmacokinetics of vancomycin in critically ill infants undergoing extracorporeal membrane oxygenation. Antimicrob Agents Chemother 1996; 40: 1139–42

    PubMed  CAS  Google Scholar 

  41. de Hoog M, Schoemaker RC, Mouton JW, et al. Vancomycin population pharmacokinetics in neonates. Clin Pharmacol Ther 2000; 67: 360–7

    PubMed  Google Scholar 

  42. Rodvold KA, Everett JA, Pryka RD, et al. Pharmacokinetics and administration regimens of vancomycin in neonates, infants and children. Clin Pharmacokinet 1997; 33(1): 32–51

    PubMed  CAS  Google Scholar 

  43. Lundstrom TS, Sobel JD. Antibiotics for gram-positive bacterial infections: vancomycin, teicoplanin, quinupristin/dalfopristin, and linezolid. Infect Dis Clin North Am 2000; 14: 463–74

    PubMed  CAS  Google Scholar 

  44. Reiter PD, Doron MW. Vancomycin cerebrospinal fluid concentrations after intravenous administration in premature infants. J Perinatol 1996; 16: 331–5

    PubMed  CAS  Google Scholar 

  45. Odio C, Mohs E, Sklar FH, et al. Adverse reactions to vancomycin used as prophylaxis for CSF shunt procedures. Am J Dis Child 1984; 138: 17–9

    PubMed  CAS  Google Scholar 

  46. McGee SM, Kaplan SL, Mason EO, et al. Ventricular fluid concentrations of vancomycin in children after intravenous and intraventricular administration. Pediatr Infect Dis J 1990; 9: 138–9

    PubMed  CAS  Google Scholar 

  47. Schaad UB, Nelson JD, McCracken Jr GH. Pharmacology and efficacy of vancomycin for staphylococcal infections in children. Rev Infect Dis 1981; 3: S282–8

    PubMed  Google Scholar 

  48. Fekety R. Vancomycin, teicoplanin ant the streptogramins: quinupristin and dalfopristin. In: Mandell GL, Bennet JE, Dolin R, editors. Mandell, Douglas and Bennett’s: principles and practice of infectious diseases. Philadelphia (PA): Churchill Livingstone, 2000: 382–92

    Google Scholar 

  49. Golper TA, Noonan HM, Elzinga L, et al. Vancomycin pharmacokinetics, renal handling, and nonrenal clearances in normal human subjects. Clin Pharmacol Ther 1988; 43: 565–70

    PubMed  CAS  Google Scholar 

  50. Pou L, Rosell M, Lopez R, et al. Changes in vancomycin pharmacokinetics during treatment. Ther Drug Monit 1996; 18: 149–53

    PubMed  CAS  Google Scholar 

  51. Rodvold KA, Blum RA, Fischer JH, et al. Vancomycin pharmacokinetics in patients with various degrees of renal function. Antimicrob Agents Chemother 1988; 32: 848–52

    PubMed  CAS  Google Scholar 

  52. Le Normand Y, Milpied N, Kergueris MF, et al. Pharmacokinetic parameters of vancomycin for therapeutic regimens in neutropenic adult patients. Int J Biomed Comput 1994; 36: 121–5

    PubMed  Google Scholar 

  53. Guay DR, Vance-Bryan K, Gilliland S, et al. Comparison of vancomycin pharmacokinetics in hospitalized elderly and young patients using a Bayesian forecaster. J Clin Pharmacol 1993; 33: 918–22

    PubMed  CAS  Google Scholar 

  54. Matzke GR, McGory RW, Halstenson CE, et al. Pharmacokinetics of vancomycin in patients with various degrees of renal function. Antimicrob Agents Chemother 1984; 25: 433–7

    PubMed  CAS  Google Scholar 

  55. Moellering Jr RC, Krogstad DJ, Greenblatt DJ. Vancomycin therapy in patients with impaired renal function: a nomogram for dosage. Ann Intern Med 1981; 94: 343–6

    PubMed  Google Scholar 

  56. Nielsen HE, Hansen HE, Korsager B, et al. Renal excretion of vancomycin in kidney disease. Acta Med Scand 1975; 197: 261–4

    PubMed  CAS  Google Scholar 

  57. Rotschafer JC, Crossley K, Zaske DE, et al. Pharmacokinetics of vancomycin: observations in 28 patients and dosage recommendations. Antimicrob Agents Chemother 1982; 22: 391–4

    PubMed  CAS  Google Scholar 

  58. Schwartz GJ, Haycock GB, Edelmann Jr CM, et al. A simple estimate of glomerular filtration rate in children derived from body length and plasma creatinine. Pediatrics 1976; 58: 259–63

    PubMed  CAS  Google Scholar 

  59. Seay RE, Brundage RC, Jensen PD, et al. Population pharmacokinetics of vancomycin in neonates. Clin Pharmacol Ther 1994; 56: 169–75

    PubMed  CAS  Google Scholar 

  60. Cantu TG, Yamanaka-Yuen NA, Lietman PS. Serum vancomycin concentrations: reappraisal of their clinical value. Clin Infect Dis 1994; 18: 533–43

    PubMed  CAS  Google Scholar 

  61. Goebel J, Ananth M, Lewy JE. Hemodiafiltration for vancomycin overdose in a neonate with end-stage renal failure. Pediatr Nephrol 1999; 13: 423–5

    PubMed  CAS  Google Scholar 

  62. van den Anker JN. Pharmacokinetics and renal function in preterm infants. Acta Paediatr 1996; 85: 1393–9

    PubMed  Google Scholar 

  63. Miranda JC, Schimmel MM, James LS, et al. Gentamicin kinetics in the neonate. Pediatr Pharmacol (New York) 1985; 5: 57–61

    CAS  Google Scholar 

  64. van den Anker JN, de Groot R, Broerse HM, et al. Assessment of glomerular filtration rate in preterm infants by serum creatinine: comparison with inulin clearance. Pediatrics 1995; 96: 1156–8

    PubMed  Google Scholar 

  65. Leake RD, Trygstad CW, Oh W. Inulin clearance in the newborn infant: relationship to gestational and postnatal age. Pediatr Res 1976; 10: 759–62

    PubMed  CAS  Google Scholar 

  66. Bidiwala KS, Lorenz JM, Kleinman LI. Renal function correlates of postnatal diuresis in preterm infants. Pediatrics 1988; 82: 50–8

    PubMed  CAS  Google Scholar 

  67. Bueva A, Guignard JP. Renal function in preterm neonates. Pediatr Res 1994; 36: 572–7

    PubMed  CAS  Google Scholar 

  68. van den Anker JN, Hop WC, de Groot R, et al. Effects of prenatal exposure to betamethasone and indomethacin on the glomerular filtration rate in the preterm infant. Pediatr Res 1994; 36: 578–81

    PubMed  CAS  Google Scholar 

  69. van den Anker JN, Hop WC, Schoemaker RC, et al. Ceftazidime pharmacokinetics in preterm infants: effect of postnatal age and postnatal exposure to indomethacin. Br J Clin Pharmacol 1995; 40: 439–43

    PubMed  Google Scholar 

  70. Gleason CA. Prostaglandins and the developing kidney. Semin Perinatol 1987; 11: 12–21

    PubMed  CAS  Google Scholar 

  71. Guignard JP, Gouyon JB. Adverse effects of drugs on the immature kidney. Biol Neonate 1988; 53: 243–52

    PubMed  CAS  Google Scholar 

  72. Gal P, Gilman JT. Drug disposition in neonates with patent ductus arteriosus. Ann Pharmacother 1993; 27: 1383–8

    PubMed  CAS  Google Scholar 

  73. Hoie EB, Swigart SA, Leuschen MP, et al. Vancomycin pharmacokinetics in infants undergoing extracorporeal membrane oxygenation. Clin Pharm 1990; 9: 711–5

    PubMed  CAS  Google Scholar 

  74. Jordan D, Mallory H. Site of action of vancomycin on Staphylococcus aureus. Antimicrob Agents Chemother 1964; 4: 489–94

    Google Scholar 

  75. Jordan D, Innis W. Selective inhibition of ribonucleic acid synthesis in Staphylococcus aureus by vancomycin. Nature 1959; 184: 1894–5

    PubMed  CAS  Google Scholar 

  76. Smith TL, Pearson ML, Wilcox KR, et al. Emergence of vancomycin resistance in Staphylococcus aureus: Glycopeptide-Intermediate Staphylococcus aureus Working Group. N Engl J Med 1999; 340: 493–501

    PubMed  CAS  Google Scholar 

  77. Begg EJ, Barclay ML, Kirkpatrick CJ. The therapeutic monitoring of antimicrobial agents. Br J Clin Pharmacol 1999; 47: 23–30

    PubMed  CAS  Google Scholar 

  78. Rubin LG, Sanchez PJ, Siegel J, et al. Evaluation and treatment of neonates with suspected late-onset sepsis: a survey of neonatologists’ practices. Pediatrics 2002; 110: e42

    PubMed  Google Scholar 

  79. Rubio M, Romero J, Corral O, et al. Bacteremia by Staphylococcus aureus: analysis of 311 episodes [in Spanish]. Enferm Infecc Microbiol Clin 1999; 17: 56–64

    PubMed  CAS  Google Scholar 

  80. Leader WG, Chandler MH, Castiglia M. Pharmacokinetic optimisation of vancomycin therapy. Clin Pharmacokinet 1995; 28: 327–42

    PubMed  CAS  Google Scholar 

  81. Louria D, Kaminski T, Buchman J. Vancomycin in severe staphylococcal infections. Arch Intern Med 1961; 107: 225–40

    PubMed  CAS  Google Scholar 

  82. Sorrell TC, Packham DR, Shanker S, et al. Vancomycin therapy for methicillin-resistant Staphylococcus aureus. Ann Intern Med 1982; 97: 344–50

    PubMed  CAS  Google Scholar 

  83. Moellering Jr RC. Emergence of enterococcus as a significant pathogen. Clin Infect Dis 1992; 14: 1173–6

    PubMed  Google Scholar 

  84. Luginbuhl LM, Rotbart HA, Facklam RR, et al. Neonatal enterococcal sepsis: case-control study and description of an outbreak. Pediatr Infect Dis J 1987; 6: 1022–6

    PubMed  CAS  Google Scholar 

  85. McNeeley D, Noel G. Containment of an outbreak of vancomycin-resistant enterococci in the neoenatal intensive care unit [abstract]. Pediatr Res 1996; 39: 1772A

    Google Scholar 

  86. Lee HK, Lee WG, Cho SR. Clinical and molecular biological analysis of a nosocomial outbreak of vancomycin-resistant enterococci in a neonatal intensive care unit. Acta Paediatr 1999; 88: 651–4

    PubMed  CAS  Google Scholar 

  87. Nosocomial enterococci resistant to vancomycin - United States, 1989–1993: National Nosocomial Infections Surveillance System. Morb Mortal Wkly Rep 1993; 42: 597–9

    Google Scholar 

  88. Frieden TR, Munsiff SS, Low DE, et al. Emergence of vancomycin-resistant enterococci in New York City. Lancet 1993; 342: 76–9

    PubMed  CAS  Google Scholar 

  89. Simonsen GS, Haaheim H, Dahl KH, et al. Transmission of VanA-type vancomycin-resistant enterococci and vanA resistance elements between chicken and humans at avoparcin-exposed farms. Microb Drug Resist 1998; 4: 313–8

    PubMed  CAS  Google Scholar 

  90. Woodford N. Glycopeptide-resistant enterococci: a decade of experience. J Med Microbiol 1998; 47: 849–62

    PubMed  CAS  Google Scholar 

  91. Noble WC, Virani Z, Cree RG. Co-transfer of vancomycin and other resistance genes from Enterococcus faecalis NCTC 12201 to Staphylococcus aureus. FEMS Microbiol Lett 1992; 72: 195–8

    PubMed  CAS  Google Scholar 

  92. McNeeley DF, Saint-Louis F, Noel GJ. Neonatal enterococcal bacteremia: an increasingly frequent event with potentially untreatable pathogens. Pediatr Infect Dis J 1996; 15: 800–5

    PubMed  CAS  Google Scholar 

  93. Sinkowitz RL, Keyserling H, Walker TJ, et al. Epidemiology of vancomycin usage at a children’s hospital, 1993 through 1995. Pediatr Infect Dis J 1997; 16: 485–9

    PubMed  CAS  Google Scholar 

  94. van den Braak N, Ott A, van Belkum A, et al. Prevalence and determinants of fecal colonization with vancomycin-resistant enterococcus in hospitalized patients in The Netherlands. Infect Control Hosp Epidemiol 2000; 21: 520–4

    PubMed  Google Scholar 

  95. Herwaldt L, Boyken L, Pfaller M. In vitro selection of resistance to vancomycin in bloodstream isolates of Staphylococcus haemolyticus and Staphylococcus epidermidis. Eur J Clin Microbiol Infect Dis 1991; 10: 1007–12

    PubMed  CAS  Google Scholar 

  96. Hiramatsu K, Hanaki H, Ino T, et al. Methicillin-resistant Staphylococcus aureus clinical strain with reduced vancomycin susceptibility. J Antimicrob Chemother 1997; 40: 135–6

    PubMed  CAS  Google Scholar 

  97. Evans RC, Holmes CJ. Effect of vancomycin hydrochloride on Staphylococcus epidermidis biofilm associated with silicone elastomer. Antimicrob Agents Chemother 1987; 31: 889–94

    PubMed  CAS  Google Scholar 

  98. Blaser J, Vergeres P, Widmer AF, et al. In vivo verification of in vitro model of antibiotic treatment of device-related infection. Antimicrob Agents Chemother 1995; 39: 1134–9

    PubMed  CAS  Google Scholar 

  99. Karlowicz MG, Buescher ES, Surka AE. Fulminant late-onset sepsis in a neonatal intensive care unit, 1988–1997, and the impact of avoiding empiric vancomycin therapy. Pediatrics 2000; 106: 1387–90

    PubMed  CAS  Google Scholar 

  100. Saarinen M, Takala AK, Koskenniemi E, et al. Spectrum of 2,836 cases of invasive bacterial or fungal infections in children: results of prospective nationwide five-year surveillance in Finland: Finnish Pediatric Invasive Infection Study Group. Clin Infect Dis 1995; 21: 1134–44

    PubMed  CAS  Google Scholar 

  101. Spafford PS, Sinkin RA, Cox C, et al. Prevention of central venous catheter-related coagulase-negative staphylococcal sepsis in neonates. J Pediatr 1994; 125: 259–63

    PubMed  CAS  Google Scholar 

  102. Kacica MA, Horgan MJ, Ochoa L, et al. Prevention of grampositive sepsis in neonates weighing less than 1500 grams. J Pediatr 1994; 125: 253–8

    PubMed  CAS  Google Scholar 

  103. Baier RJ, Bocchini JA, Brown Jr EG. Selective use of vancomycin to prevent coagulase-negative staphylococcal nosocomial bacteremia in high risk very low birth weight infants. Pediatr Infect Dis J 1998; 17: 179–83

    PubMed  CAS  Google Scholar 

  104. Moller JC, Nelskamp I, Jensen R, et al. Teicoplanin pharmacology in prophylaxis for coagulase-negative staphylococcal sepsis of very low birthweight infants. Acta Paediatr 1996; 85: 638–9

    PubMed  CAS  Google Scholar 

  105. Moller JC, Rossa M, Nachtrodt G, et al. Preventive antibiotic administration for prevention of nosocomial septicemia in very small premature infants (VLBW infants). Preventive vancomycin administration against infections with coagulase negative streptococci: prevention of translocation with oral cefixime therapy in intestinal colonization with pathogenic gramnegative pathogens [in German]. Klin Padiatr 1993; 205: 140–4

    PubMed  CAS  Google Scholar 

  106. Moller JC, Nachtrodt G, Richter A, et al. Prophylactic vancomycin to prevent staphylococcal septicaemia in very-low-birth-weight infants [letter]. Lancet 1992; 340: 424

    PubMed  CAS  Google Scholar 

  107. Moller JC, Nachtrodt G, Tegtmeyer FK, et al. Prophylactic low-dose vancomycin treatment in very-low-birth-weight infants. Dev Pharmacol Ther 1992; 19: 178–82

    PubMed  CAS  Google Scholar 

  108. Moller JC, Nelskamp I, Jensen R, et al. Comparison of vancomycin and teicoplanin for prophylaxis of sepsis with coagulase negative staphylococci (CONS) in very low birth weight (VLBW) infants. J Perinat Med 1997; 25: 361–7

    PubMed  CAS  Google Scholar 

  109. Craft AP, Finer NN, Barrington KJ. Vancomycin for prophylaxis against sepsis in preterm neonates. Cochrane Database Syst Rev 2000; (2): CD001971

    PubMed  Google Scholar 

  110. Krediet TG, Fleer A. Should we use vancomycin as prophylaxis to prevent neonatal nosocomial coagulase-negative staphylococcal septicemia? Pediatr Infect Dis J 1998; 17: 763–4

    PubMed  CAS  Google Scholar 

  111. Vermont CL, Hartwig NG, Fleer A, et al. Persistence of clones of coagulase-negative staphylococci among premature neonates in neonatal intensive care units: two-center study of bacterial genotyping and patient risk factors. J Clin Microbiol 1998; 36: 2485–90

    PubMed  CAS  Google Scholar 

  112. Krediet TG, Jones ME, Gerards LJ, et al. Clinical outcome of cephalothin versus vancomycin therapy in the treatment of coagulase-negative staphylococcal septicemia in neonates: relation to methicillin resistance and mec A gene carriage of blood isolates. Pediatrics 1999; 103: E29

    PubMed  CAS  Google Scholar 

  113. Matrai-Kovalskis Y, Greenberg D, Shinwell ES, et al. Positive blood cultures for coagulase-negative staphylococci in neonates: does highly selective vancomycin usage affect outcome? Infection 1998; 26: 85–92

    PubMed  CAS  Google Scholar 

  114. Wilhelm MP. Vancomycin. Mayo Clin Proc 1991; 66: 1165–70

    PubMed  CAS  Google Scholar 

  115. Best CJ, Ewart M, Sumner E. Perioperative complications following the use of vancomycin in children: a report of two cases. Br J Anaesth 1989; 62: 576–7

    PubMed  CAS  Google Scholar 

  116. Boussemart T, Cardona J, Berthier M, et al. Cardiac arrest associated with vancomycin in a neonate [letter]. Arch Dis Child Fetal Neonatal Ed 1995; 73: F123

    PubMed  CAS  Google Scholar 

  117. Wood CA, Kohlhepp SJ, Kohnen PW, et al. Vancomycin enhancement of experimental tobramycin nephrotoxicity. Antimicrob Agents Chemother 1986; 30: 20–4

    PubMed  CAS  Google Scholar 

  118. Wold JS, Turnipseed SA. Toxicology of vancomycin in laboratory animals. Rev Infect Dis 1981; 3 Suppl.: S224–9

    PubMed  Google Scholar 

  119. Bailie GR, Neal D. Vancomycin ototoxicity and nephrotoxicity: a review. Med Toxicol Adverse Drug Exp 1988; 3: 376–86

    PubMed  CAS  Google Scholar 

  120. Duffull SB, Begg EJ. Vancomycin toxicity: what is the evidence for dose dependency? Adverse Drug React Toxicol Rev 1994; 13: 103–14

    PubMed  CAS  Google Scholar 

  121. Saunders NJ. Vancomycin administration and monitoring reappraisal. J Antimicrob Chemother 1995; 36: 279–82

    PubMed  CAS  Google Scholar 

  122. Rybak MJ, Albrecht LM, Boike SC, et al. Nephrotoxicity of vancomycin, alone and with an aminoglycoside. J Antimicrob Chemother 1990; 25: 679–87

    PubMed  CAS  Google Scholar 

  123. Schumacher GE, Barr JT. Using population-based serum drug concentration cutoff values to predict toxicity: test performance and limitations compared with Bayesian interpretation. Clin Pharm 1990; 9: 788–96

    PubMed  CAS  Google Scholar 

  124. Sakata H, Maruyama S, Ishioka T, et al. Change of renal function during vancomycin therapy in extremely low birthweight infants. Acta Paediatr Jpn 1996; 38: 619–21

    PubMed  CAS  Google Scholar 

  125. Tissing WJ, Umans-Eckenhausen MA, van den Anker JN. Vancomycin intoxication in a preterm neonate [letter]. Eur J Pediatr 1993; 152: 700

    PubMed  CAS  Google Scholar 

  126. Dean RP, Wagner DJ, Tolpin MD. Vancomycin/aminoglycoside nephrotoxicity [letter]. J Pediatr 1985; 106: 861–2

    PubMed  CAS  Google Scholar 

  127. Nahata MC. Lack of nephrotoxicity in pediatric patients receiving concurrent vancomycin and aminoglycoside therapy. Chemotherapy 1987; 33: 302–4

    PubMed  CAS  Google Scholar 

  128. Bhatt-Mehta V, Schumacher RE, Faix RG, et al. Lack of vancomycin-associated nephrotoxicity in newborn infants: a case-control study. Pediatrics 1999; 103: e48

    PubMed  CAS  Google Scholar 

  129. Brummett RE. Ototoxicity of vancomycin and analogues. Otolaryngol Clin North Am 1993; 26: 821–8

    PubMed  CAS  Google Scholar 

  130. Lutz H, Lenarz T, Weidauer H, et al. Ototoxicity of vancomycin: an experimental study in guinea pigs. ORL J Otorhinolaryngol Relat Spec 1991; 53: 273–8

    PubMed  CAS  Google Scholar 

  131. Brummett RE, Fox KE, Jacobs F, et al. Augmented gentamicin ototoxicity induced by vancomycin in guinea pigs. Arch Otolaryngol Head Neck Surg 1990; 116: 61–4

    PubMed  CAS  Google Scholar 

  132. Geraci JE, Heilman FR, Nichols DR. Antibiotic therapy of bacterial endocarditis: VII. Vancomycin for acute micrococcal endocarditis. Staff Meetings of the Mayo Clinic 1958; 33: 172–81

    CAS  Google Scholar 

  133. Reyes MP, Ostrea Jr EM, Cabinian AE, et al. Vancomycin during pregnancy: does it cause hearing loss or nephrotoxicity in the infant? Am J Obstet Gynecol 1989; 161: 977–81

    PubMed  CAS  Google Scholar 

  134. Burkhart KK, Metcalf S, Shurnas E, et al. Exchange transfusion and multidose activated charcoal following vancomycin overdose. J Toxicol Clin Toxicol 1992; 30: 285–94

    PubMed  CAS  Google Scholar 

  135. de Hoog M, van Zanten BA, Hop WC, et al. Newborn hearing screening: tobramycin and vancomycin are not risk factors for hearing loss. J Pediatr 2003; 142: 41–6.

    PubMed  Google Scholar 

  136. Gabriel MH, Kildoo 3rd GC, Gennrich JL, et al. Prospective evaluation of a vancomycin dosage guideline for neonates. Clin Pharm 1991; 10: 129–32

    PubMed  CAS  Google Scholar 

  137. Koren G, James A. Vancomycin dosing in preterm infants: prospective verification of new recommendations. J Pediatr 1987; 110: 797–8

    PubMed  CAS  Google Scholar 

  138. Young TE, Mangum OB. Neofax: a manual of drugs used in neonatal care. Raleigh (NC): Acorn Publishing, 1998

    Google Scholar 

  139. Duffull SB, Chambers ST, Begg EJ. How vancomycin is used in Australasia: a survey. Aust NZ J Med 1993; 23: 662–6

    CAS  Google Scholar 

  140. Fitzsimmons WE, Postelnick MJ, Tortorice PV. Survey of vancomycin monitoring guidelines in Illinois hospitals. Drug Intell Clin Pharm 1988; 22: 598–600

    PubMed  CAS  Google Scholar 

  141. Anne L, Hu M, Chan K, et al. Potential problem with fluorescence polarization immunoassay cross-reactivity to vancomycin degradation product CDP-1: its detection in sera of renally impaired patients. Ther Drug Monit 1989; 11: 585–91

    PubMed  CAS  Google Scholar 

  142. Sym D, Smith C, Meenan G, et al. Fluorescence polarization immunoassay: can it result in an overestimation of vancomycin in patients not suffering from renal failure? Ther Drug Monit 2001; 23: 441–4

    PubMed  CAS  Google Scholar 

  143. Smith PF, Petros WP, Soucie MP, et al. New modified fluorescence polarization immunoassay does not falsely elevate vancomycin concentrations in patients with end-stage renal disease. Ther Drug Monit 1998; 20: 231–5

    PubMed  CAS  Google Scholar 

  144. de Hoog M, Mouton JW, van den Anker JN. Why monitor peak vancomycin concentrations? [letter]. Lancet 1995; 345: 646

    PubMed  Google Scholar 

  145. Shackley F, Roberts P, Heath P, et al. Trough-only monitoring of serum vancomycin concentrations in neonates. J Antimicrob Chemother 1998; 41: 141–2

    PubMed  CAS  Google Scholar 

  146. Saunders NJ. Why monitor peak vancomycin concentrations? Lancet 1994; 344: 1748–50

    PubMed  CAS  Google Scholar 

  147. Miles MV, Li L, Lakkis H, et al. Special considerations for monitoring vancomycin concentrations in pediatric patients. Ther Drug Monit 1997; 19: 265–70

    PubMed  CAS  Google Scholar 

  148. Sawchuk R, Zaske D. Pharmacokinetic dosage regimens which utilize multiple intravenous infusions: gentamicin in burn patients. J Pharmacokinet Biopharm 1976; 4: 183–95

    PubMed  CAS  Google Scholar 

  149. Pryka RD, Rodvold KA, Erdman SM. An updated comparison of drug dosing methods. Part IV: vancomycin. Clin Pharmacokinet 1991; 20(6): 463–76

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Matthijs de Hoog.

Rights and permissions

Reprints and permissions

About this article

Cite this article

de Hoog, M., Mouton, J.W. & van den Anker, J.N. Vancomycin. Clin Pharmacokinet 43, 417–440 (2004). https://doi.org/10.2165/00003088-200443070-00001

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.2165/00003088-200443070-00001

Keywords

Navigation