Skip to main content
Log in

Tacrolimus Population Pharmacokinetic-Pharmacogenetic Analysis and Bayesian Estimation in Renal Transplant Recipients

  • Original Research Article
  • Published:
Clinical Pharmacokinetics Aims and scope Submit manuscript

Abstract

Objectives: The aims of this study were (i) to investigate the population pharmacokinetics of tacrolimus in renal transplant recipients, including the influence of biological and pharmacogenetic covariates; and (ii) to develop a Bayesian estimator able to reliably estimate the individual pharmacokinetic parameters and inter-dose area under the blood concentration-time curve (AUC) from 0 to 12 hours (AUC12) in renal transplant patients.

Methods: Full pharmacokinetic profiles were obtained from 32 renal transplant patients at weeks 1 and 2, and at months 1, 3 and 6 post-transplantation. The population pharmacokinetic analysis was performed using the nonlinear mixed-effect modelling software NONMEM® version VI. Patients’ genotypes were characterized by allelic discrimination for PXR −25385C>T genes.

Results: Tacrolimus pharmacokinetics were well described by a two-compartment model combined with an Erlang distribution to describe the absorption phase, with low additive and proportional residual errors of 1.6 ng/mL and 9%, respectively. Both the haematocrit and PXR −25385C>T single nucleotide polymorphism (SNP) were identified as significant covariates for apparent oral clearance (CL/F) of tacrolimus, which allowed improvement of prediction accuracy. Specifically, CL/F decreased gradually with the number of mutated alleles for the PXR −25385C>T SNP and was inversely proportional to the haematocrit value. However, clinical criteria of relevance, mainly the decrease in interindividual variability and residual error, led us to retain only the haematocrit in the final model. Maximum a posteriori Bayesian forecasting allowed accurate prediction of the tacrolimus AUC12 using only three sampling times (at 0 hour [predose] and at 1 and 3 hours postdose) in addition to the haematocrit value, with a nonsignificant mean AUC bias of 2% and good precision (relative mean square error = 11%).

Conclusion: Population pharmacokinetic analysis of tacrolimus in renal transplant recipients showed a significant influence of the haematocrit on its CL/F and led to the development of a Bayesian estimator compatible with clinical practice and able to accurately predict tacrolimus individual pharmacokinetic parameters and the AUC12.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Table I
Fig. 1
Table II
Fig. 2
Table III
Table IV
Fig. 3
Fig. 4
Table V
Table VI
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Venkataramanan R, Swaminathan A, Prasad T, et al. Clinical pharmacokinetics of tacrolimus. Clin Pharmacokinet 1995 Dec; 29(6): 404–30

    Article  PubMed  CAS  Google Scholar 

  2. Tada H, Satoh S, Iinuma M, et al. Chronopharmacokinetics of tacrolimus in kidney transplant recipients: occurrence of acute rejection. J Clin Pharmacol 2003 Aug; 43(8): 859–65

    Article  PubMed  CAS  Google Scholar 

  3. Wong KM, Shek CC, Chau KF, et al. Abbreviated tacrolimus area-under-the-curve monitoring for renal transplant recipients. Am J Kidney Dis 2000 Apr; 35(4): 660–6

    Article  PubMed  CAS  Google Scholar 

  4. Hebert MF. Contributions of hepatic and intestinal metabolism and P-glycoprotein to cyclosporine and tacrolimus oral drug delivery. Adv Drug Deliv Rev 1997 Sep 15; 27(2–3): 201–14

    Article  PubMed  CAS  Google Scholar 

  5. Saeki T, Ueda K, Tanigawara Y, et al. Human P-glycoprotein transports cyclosporin A and FK506. J Biol Chem 1993 Mar 25; 268(9): 6077–80

    PubMed  CAS  Google Scholar 

  6. Hesselink DA, van Schaik RH, van der Heiden I, et al. Genetic polymorphisms of the CYP3A4, CYP3A5, and MDR-1 genes and pharmacokinetics of the calcineurin inhibitors cyclosporine and tacrolimus. Clin Pharmacol Ther 2003 Sep; 74(3): 245–54

    Article  PubMed  CAS  Google Scholar 

  7. Uesugi M, Masuda S, Katsura T, et al. Effect of intestinal CYP3A5 on postoperative tacrolimus trough levels in living-donor liver transplant recipients. Pharmacogenet Genomics 2006 Feb; 16(2): 119–27

    Article  PubMed  CAS  Google Scholar 

  8. Fredericks S, Moreton M, Reboux S, et al. Multidrug resistance gene-1 (MDR-1) haplotypes have a minor influence on tacrolimus dose requirements. Transplantation 2006 Sep 15; 82(5): 705–8

    Article  PubMed  CAS  Google Scholar 

  9. Bertilsson G, Heidrich J, Svensson K, et al. Identification of a human nuclear receptor defines a new signaling pathway for CYP3A induction. Proc Natl Acad Sci U S A 1998 Oct 13; 95(21): 12208–13

    Article  PubMed  CAS  Google Scholar 

  10. Moore JT, Kliewer SA. Use of the nuclear receptor PXR to predict drug interactions. Toxicology 2000 Nov 16; 153(1–3): 1–10

    Article  PubMed  CAS  Google Scholar 

  11. Pascussi JM, Drocourt L, Gerbal-Chaloin S, et al. Dual effect of dexamethasone on CYP3A4 gene expression in human hepatocytes: sequential role of glucocorticoid receptor and pregnane X receptor. Eur J Biochem 2001 Dec; 268(24): 6346–58

    Article  PubMed  CAS  Google Scholar 

  12. Lamba J, Lamba V, Strom S, et al. Novel single nucleotide polymorphisms in the promoter and intron 1 of human pregnane X receptor/NR1I2 and their association with CYP3A4 expression. Drug Metab Dispos 2008 Jan; 36(1): 169–81

    Article  PubMed  CAS  Google Scholar 

  13. Zhang J, Kuehl P, Green ED, et al. The human pregnane X receptor: genomic structure and identification and functional characterization of natural allelic variants. Pharmacogenetics 2001 Oct; 11(7): 555–72

    Article  PubMed  CAS  Google Scholar 

  14. Miura M, Satoh S, Inoue K, et al. Influence of CYP3A5, ABCB1 and NR1I2 polymorphisms on prednisolone pharmacokinetics in renal transplant recipients. Steroids 2008 Oct; 73(11): 1052–9

    Article  PubMed  CAS  Google Scholar 

  15. Fukudo M, Yano I, Yoshimura A, et al. Impact of MDR1 and CYP3A5 on the oral clearance of tacrolimus and tacrolimus-related renal dysfunction in adult living-donor liver transplant patients. Pharmacogenet Genomics 2008 May; 18(5): 413–23

    Article  PubMed  CAS  Google Scholar 

  16. Li D, Lu W, Zhu JY, et al. Population pharmacokinetics of tacrolimus and CYP3A5, MDR1 and IL-10 polymorphisms in adult liver transplant patients. J Clin Pharm Ther 2007 Oct; 32(5): 505–15

    Article  PubMed  CAS  Google Scholar 

  17. Le Meur Y, Djebli N, Szelag JC, et al. CYP3A5*3 influences sirolimus oral clearance in de novo and stable renal transplant recipients. Clin Pharmacol Ther 2006 Jul; 80(1): 51–60

    Article  PubMed  Google Scholar 

  18. Boekmann AJ, Sheiner LB, Beal SL. NONMEM user’s guide, part V: introductory guide. San Francisco (CA): NONMEM Project Group, University of California, 1992

    Google Scholar 

  19. Saint-Marcoux F, Knoop C, Debord J, et al. Pharmacokinetic study of tacrolimus in cystic fibrosis and non-cystic fibrosis lung transplant patients and design of Bayesian estimators using limited sampling strategies. Clin Pharmacokinet 2005; 44(12): 1317–28

    Article  PubMed  CAS  Google Scholar 

  20. Etienne MC, Chatelut E, Pivot X, et al. Co-variables influencing 5-fluorouracil clearance during continuous venous infusion: a NONMEM analysis. Eur J Cancer 1998 Jan; 34(1): 92–7

    Article  PubMed  CAS  Google Scholar 

  21. Parke J, Holford NH, Charles BG. A procedure for generating bootstrap samples for the validation of nonlinear mixed-effects population models. Comput Methods Programs Biomed 1999 Apr; 59(1): 19–29

    Article  PubMed  CAS  Google Scholar 

  22. Ishibashi T, Yano Y, Oguma T. Population pharmacokinetics of platinum after nedaplatin administration and model validation in adult patients. Br J Clin Pharmacol 2003 Aug; 56(2): 205–13

    Article  PubMed  CAS  Google Scholar 

  23. Premaud A, Le MY, Debord J, et al. Maximum a posteriori Bayesian estimation of mycophenolic acid pharmacokinetics in renal transplant recipients at different postgrafting periods. Ther Drug Monit 2005 Jun; 27(3): 354–61

    Article  PubMed  CAS  Google Scholar 

  24. Sheiner LB, Beal SL. Some suggestions for measuring predictive performance. J Pharmacokinet Biopharm 1981 Aug; 9(4): 503–12

    PubMed  CAS  Google Scholar 

  25. Scholten EM, Cremers SC, Schoemaker RC, et al. AUC-guided dosing of tacrolimus prevents progressive systemic overexposure in renal transplant recipients. Kidney Int 2005 Jun; 67(6): 2440–7

    Article  PubMed  CAS  Google Scholar 

  26. Rousseau A, Leger F, Le Meur Y, et al. Population pharmacokinetic modeling of oral cyclosporin using NONMEM: comparison of absorption pharmacokinetic models and design of a Bayesian estimator. Ther Drug Monit 2004 Feb; 26(1): 23–30

    Article  PubMed  CAS  Google Scholar 

  27. Djebli N, Rousseau A, Hoizey G, et al. Sirolimus population pharmacokinetic/pharmacogenetic analysis and Bayesian modelling in kidney transplant recipients. Clin Pharmacokinet 2006; 45(11): 1135–48

    Article  PubMed  CAS  Google Scholar 

  28. Staatz CE, Willis C, Taylor PJ, et al. Population pharmacokinetics of tacrolimus in adult kidney transplant recipients. Clin Pharmacol Ther 2002 Dec; 72(6): 660–9

    Article  PubMed  CAS  Google Scholar 

  29. Antignac M, Barrou B, Farinotti R, et al. Population pharmacokinetics and bioavailability of tacrolimus in kidney transplant patients. Br J Clin Pharmacol 2007 Dec; 64(6): 750–7

    PubMed  CAS  Google Scholar 

  30. Tunblad K, Lindbom L, McFadyen L, et al. The use of clinical irrelevance criteria in covariate model building with application to dofetilide pharmacokinetic data. J Pharmacokinet Pharmacodyn 2008 Oct; 35(5): 503–26

    Article  PubMed  CAS  Google Scholar 

  31. Undre NA, Schafer A. Factors affecting the pharmacokinetics of tacrolimus in the first year after renal transplantation. European Tacrolimus Multicentre Renal Study Group. Transplant Proc 1998 Jun; 30(4): 1261–3

    Article  PubMed  CAS  Google Scholar 

  32. Andrews WS, Sommerauer J, Conlin C, et al. Comparison of cyclosporine- vs tacrolimus-based immunosuppression in pediatric liver transplantation. Transplant Proc 1996 Apr; 28(2): 897–8

    PubMed  CAS  Google Scholar 

  33. Thervet E, Anglicheau D, King B, et al. Impact of cytochrome p450 3A5 genetic polymorphism on tacrolimus doses and concentration-to-dose ratio in renal transplant recipients. Transplantation 2003 Oct 27; 76(8): 1233–5

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

This study was funded by Roche and Astellas. Khaled Benkali received a PhD grant from Conseil Régional du Limousin. We gratefully thank François-Ludovic Sauvage, Clinical Chemist, and Hélène Roussel, Clinical Research Assistant, for their excellent technical assistance. We also thank the Limoges University Hospital for their support. The authors have no other conflicts of interest that are directly relevant to the contents of this study.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Annick Rousseau.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Benkali, K., Prémaud, A., Picard, N. et al. Tacrolimus Population Pharmacokinetic-Pharmacogenetic Analysis and Bayesian Estimation in Renal Transplant Recipients. Clin Pharmacokinet 48, 805–816 (2009). https://doi.org/10.2165/11318080-000000000-00000

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.2165/11318080-000000000-00000

Keywords

Navigation