Skip to main content
Log in

Safety and Tolerability of Antiepileptic Drug Treatment in Children with Epilepsy

  • Review Article
  • Published:
Drug Safety Aims and scope Submit manuscript

Abstract

The aim of treating epilepsy is to control or at least decrease seizures without producing unacceptable adverse effects that impair quality of life. Antiepileptic drugs (AEDs) have been considered amongst the drugs most frequently associated with fatal suspected adverse drug reactions. Physicians must therefore be as familiar with safety and tolerability data of AEDs as they are with the expected therapeutic effects.

AEDs may cause dose-related adverse effects (i.e. drowsiness, fatigue, dizziness, blurry vision and incoordination) that, in most cases, may be obviated by lowering the dosage, reducing the number of drugs or switching to a better tolerated AED. AEDs also have the potential of precipitating idiosyncratic adverse effects (i.e. serious cutaneous, haematological and hepatic events), which are more common in children and usually require withdrawal of the AED. Although occurrence of idiosyncratic adverse effects can only rarely be predicted or prevented, there are known risk factors that can help in identifying patients at high risk. Occurrence of an idiosyncratic event in a close relative, a concomitant autoimmune disease, co-treatment with specific drugs, history of a previous allergic drug reaction, starting treatment with high doses and rapid titration have all been associated with a higher risk of idiosyncratic adverse effects.

New AEDs have been developed in the last two decades with the aim of improving the benefit-risk balance of AED therapy. Available evidence suggests that the newer AEDs are no more effective but may be somewhat better tolerated than older molecules.

We performed a literature review with the aim of evaluating safety and tolerability of second- and third-generation AEDs in children. A PubMed search was conducted with the purpose of identifying English-language studies published between 1 January 1989 and 1 January 2011 that reported any adverse event having occurred in children with epilepsy in whom second- and third-generation AEDs were administered.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig 1
Table I
Table II
Table III
Table IV

Similar content being viewed by others

References

  1. Clarkson A, Chaoonara I. Surveillance for fatal suspected adverse drug reactions in the UK. Arch Dis Child 2002; 87: 462–7

    Article  PubMed  CAS  Google Scholar 

  2. Connock M, Frew E, Evans BW, et al. The clinical effectiveness and cost-effectiveness of newer drugs for children with epilepsy: a systematic review. Health Technol Assess 2006; 10: iii, ix–118

    Google Scholar 

  3. Chu-Store C, Thiele EA. New drugs for pediatric epilepsy. Semin Pediatr Neurol 2010; 17: 214–23

    Article  Google Scholar 

  4. Johann-Liang R, Pharm JW, Chen M, et al. Pediatric drug surveillance and the food and drug administration’s adverse event reporting system: an overview of reports, 2003-2007. Pharmacoepidemiol Drug Saf 2009; 18: 24–7

    Article  PubMed  Google Scholar 

  5. Shah SS, Hall M, Goodman DM, et al. Off-label drug use in hospitalized children. Arch Pediatr Adolesc Med 2007; 161: 282–90

    Article  PubMed  Google Scholar 

  6. Kennedy GM, Lhatoo SD. CNS adverse events associated with antiepileptic drugs. CNS Drugs 2009; 22: 739–60

    Article  Google Scholar 

  7. Gillham R, Baker G, Thompson R, et al. Standardisation of a self-report questionnaire for use in evaluating cognitive, affective and behavioural side-effects of anti-epileptic drug treatment. Epilepsy Res 1996; 24: 47–55

    Article  PubMed  CAS  Google Scholar 

  8. Guerrini R, Belmonte A, Genton P. Antiepileptic drug-induced worsening of seizures in children. Epilepsia 1998; 39 Suppl. 3: S2–10

    Article  PubMed  CAS  Google Scholar 

  9. Gayatri NA, Livingston JH. Aggravation of epilepsy by anti-epileptic drugs. Dev Med Child Neurol 2006; 48: 394–8

    Article  PubMed  CAS  Google Scholar 

  10. Parmeggiani L, Seri S, Bonanni P, et al. Electrophysiological characterization of spontaneous and carbamazepine-induced epileptic negative myoclonus in benign childhood epilepsy with centro-temporal spikes. Clin Neurophysiol 2004; 115: 50–8

    Article  PubMed  Google Scholar 

  11. Asconape J, Diedrich A, Della Badia J. Myoclonus associated with the use of gabapentin. Epilepsia 2000; 41: 479–81

    Article  PubMed  CAS  Google Scholar 

  12. Lortie A, Chiron C, Mumford J, et al. The potential for increasing seizure frequency, relapse, and appearance of new seizure types with vigabatrin. Neurology 1993; 43 Suppl. 5: S24–7

    PubMed  CAS  Google Scholar 

  13. Guerrini R, Belmonte A, Parmeggiani L, et al. Myoclonic status epilepticus following high dose lamotrigine therapy. Brain Dev 1999; 21: 420–4

    Article  PubMed  CAS  Google Scholar 

  14. Cerminara C, Montanaro ML, Curatolo P, et al. Lamo-trigine-induced seizure aggravation and negative myoclonus in idiopathic rolandic epilepsy. Neurology 2004; 63: 373–5

    Article  PubMed  CAS  Google Scholar 

  15. Chapman K, Holland K, Erenberg G. Seizure exacerbation associated with oxcarbazepine in idiopathic focal epilepsy of childhood. Neurology 2003; 61: 1012–3

    Article  PubMed  Google Scholar 

  16. Gelisse P, Genton P, Kuate C, et al. Worsening of seizures by oxcarbazepine in juvenile idiopathic generalized epilepsies. Epilepsia 2004; 45: 1282–6

    Article  PubMed  CAS  Google Scholar 

  17. Kaddurah AK, Holmes GL. Possible precipitation of myoclonic seizures with oxcarbazepine. Epilepsy Behav 2006; 8: 289–93

    Article  PubMed  Google Scholar 

  18. Skardoutsou A, Voudris KA, Vagiakou EA. Non-convulsive status epilepticus associated with tiagabine therapy in children. Seizure 2003; 12: 599–601

    Article  PubMed  Google Scholar 

  19. Ferrendelli JA. Concern with antiepileptic drug initiation: safety, tolerability, and efficacy. Epilepsia 2001; 42 Suppl 4: 28–30

    Article  PubMed  Google Scholar 

  20. Johannessen SI, Tomson T. Pharmacokinetic variability of newer antiepileptic drugs: when is monitoring needed? Clin Pharmacokinet 2006; 45: 1061–75

    Article  PubMed  CAS  Google Scholar 

  21. Krasowski M. Therapeutic drug monitoring of the newer anti-epilepsy medications. Pharmaceuticals 2010; 3: 1909–35

    PubMed  CAS  Google Scholar 

  22. Patsalos PN, Berry DJ, Bourgeois BF, et al. Antiepileptic drugs-best practice guidelines for therapeutic drug monitoring: a position paper by the subcommission on therapeutic drug monitoring. ILAE Commission on Therapeutic Strategies. Epilepsia 2008; 49: 1239–76

    Article  PubMed  CAS  Google Scholar 

  23. Patsalos PN, Perucca E. Clinically important drug interactions in epilepsy: general features and interactions between antiepileptic drugs. Lancet Neurol 2003; 2: 347–56

    Article  PubMed  CAS  Google Scholar 

  24. Johannessen Landmark C, Patsalos PN. Drug interactions involving the new second- and third-generation antiepileptic drugs. Expert Rev Neurother 2010; 10: 119–40

    Article  PubMed  CAS  Google Scholar 

  25. Besag FM, Berry DJ, Pool F, et al. Carbamazepine toxicity with lamotrigine: pharmacokinetic or pharmacodynamic interaction? Epilepsia 1998; 39: 183–7

    Article  PubMed  CAS  Google Scholar 

  26. Novy J, Patsalos PN, Sander JW, et al. Lacosamide neurotoxicity associated with concomitant use of sodium channel-blocking antiepileptic drugs: a pharmacodynamic interaction? Epilepsy Behav 2011; 20: 20–3

    Article  PubMed  Google Scholar 

  27. Pellock JM, Willmore LJ. A rational guide to routine blood monitoring in patients receiving antiepileptic drugs. Neurology 1991; 41: 961–4

    Article  PubMed  CAS  Google Scholar 

  28. Camfield P, Camfield C. Monitoring for adverse effects of antiepileptic drugs. Epilepsia 2006; 47 Suppl. 1: 31–4

    Article  PubMed  CAS  Google Scholar 

  29. Bourgeois BF. Determining the effects of antiepileptic drugs on cognitive function in pediatric patients with epilepsy. J Child Neurol 2004; Suppl 1: 15–24

    Google Scholar 

  30. Korn-Merker E, Borusiak P, Boenigk HE. Gabapentin in childhood epilepsy: a prospective evaluation of efficacy and safety. Epilepsy Res 2000; 39: 27–32

    Article  Google Scholar 

  31. Appleton R, Fichtner K, LaMoreaux L, et al. Gabapentin as add-on therapy in children with refractory partial seizures: a 24-week, multicenter, open-label study. Dev Med Child Neurol 2001; 43: 269–73

    Article  PubMed  CAS  Google Scholar 

  32. Levisohn PM, Mintz M, Hunter SJ, et al. Neurocognitive effects of adjunctive levetiracetam in children with partialonset seizures: a randomized, double-blind, placebo-controlled, noninferiority trial. Epilepsia 2009; 50: 2377–89

    Article  PubMed  CAS  Google Scholar 

  33. Martinez W, Ingenito A, Blakeslee M, et al. Efficacy, safety, and tolerability of oxcarbazepine monotherapy. Epilepsy Behav 2006; 9: 448–56

    Article  PubMed  Google Scholar 

  34. Wier HA, Cerna A, So TY. Rufinamide for pediatric patients with Lennox-Gastaut syndrome: a comprehensive overview. Paediatr Drugs 2011; 13(2): 97–106

    Article  PubMed  Google Scholar 

  35. Uldall P, Bulteau C, Pedersen SA, et al. Tiagabine adjunctive therapy in children with refractory epilepsy: a single-blind dose escalating study. Epilepsy Res 2000; 42: 159–68

    Article  PubMed  CAS  Google Scholar 

  36. Rosenfeld WE, Doose DR, Walker SA, et al. A study of topiramate pharmacokinetics and tolerability in children with epilepsy. Pediatr Neurol 1999; 20: 339–44

    Article  PubMed  CAS  Google Scholar 

  37. Arroyo S, Dodson WE, Privitera MD, et al. Randomized dose-controlled study of topiramate as first-line therapy in epilepsy. Acta Neurol Scand 2005; 112: 214–22

    Article  PubMed  CAS  Google Scholar 

  38. Kluger G, Zsoter A, Holthausen H. Long-term of zonisamide in refractory childhood-onset epilepsy. Eur J Paediatr Neurol 2008; 12: 19–23

    Article  PubMed  Google Scholar 

  39. Grosso S, Cordelli DM, Coppola G, et al. Efficacy and safety of felbamate in children under 4 years of age: a retrospective chart review. Eur J Neurol 2008; 15: 940–6

    Article  PubMed  CAS  Google Scholar 

  40. Gavatha M, Ioannou I, Papavasiliou SA. Efficacy and tolerability of oral lacosamide as adjunctive therapy in pediatric patients with pharmacoresistant focal epilepsy. Epilepsy Behav 2001; 20: 691–3

    Article  Google Scholar 

  41. Perez J, Chiron C, Musial C, et al. Stiripentol: efficacy and tolerability in children with epilepsy. Epilepsia 1999; 40: 1618–26

    Article  PubMed  CAS  Google Scholar 

  42. Chiron C, Marchand MC, Tran A, et al. Stiripentol in severe myoclonic epilepsy in infancy: a randomised placebo-controlled syndrome-dedicated trial. STICLO study group. Lancet 2000; 356(9242): 1638–42

    Article  PubMed  CAS  Google Scholar 

  43. Inoue Y, Ohtsuka Y, Oguni H, et al. Stiripentol open study in Japanese patients with Dravet syndrome. Epilepsia 2009; 50: 2362–8

    Article  PubMed  CAS  Google Scholar 

  44. Bourgeois BF, D’Souza J. Long-term safety and tolerability of oxcarbazepine in children: a review of clinical experience. Epilepsy Behav 2005; 7: 375–82

    Article  PubMed  Google Scholar 

  45. Northam RS, Hernandes AW, Litzinger MJ, et al. Oxcarbazepine in infants and young children with partial seizures. Pediatr Neurol 2005; 33: 337–44

    Article  PubMed  Google Scholar 

  46. Jan MM, Zuberi SA, Alsaihati BA. Pregabalin: preliminary experience in intractable childhood epilepsy. Pediatr Neurol 2009; 40: 347–50

    Article  PubMed  Google Scholar 

  47. Wheless JW, Conry J, Krauss G, et al. Safety and tolerability of rufinamide in children with epilepsy: a pooled analysis of 7 clinical studies. J Child Neurol 2009; 24: 1520–5

    Article  PubMed  Google Scholar 

  48. Vendrame M, Loddenkemper T, Gooty VD, et al. Experience with rufinamide in a pediatric population: a single center’s experience. Pediatr Neurol 2010; 43: 155–8

    Article  PubMed  Google Scholar 

  49. Cho YJ, Heo K, Kim WJ, et al. Long-term efficacy and tolerability of topiramate as add-on therapy in refractory partial epilepsy: an observational study. Epilepsia 2009; 50: 1910–9

    Article  PubMed  CAS  Google Scholar 

  50. Shinnar S, Pellock JM, Conry JA. Open-label, long-term safety study zonisamide administered to children and adolescents with epilepsy. Eur J Paediatr Neurol 2009; 13: 3–9

    Article  PubMed  Google Scholar 

  51. Dalla Bernardina B, Fontana E, Vigevano F, et al. Efficacy and tolerability of vigabatrin in children with refractory partial seizures: a single-blind dose-increasing study. Epilepsia 1995; 36: 687–91

    Article  PubMed  CAS  Google Scholar 

  52. Mohamed K, Appleton R, Rosenbloom L. Efficacy and tolerability of topiramate in childhood and adolescent epilepsy: a clinical experience. Seizure 2000; 9: 137–41

    Article  PubMed  CAS  Google Scholar 

  53. Guilhoto LM, Loddenkemper T, Gooty VD, et al. Experience with lacosamide in a series of children with drug-resistant focal epilepsy. Pediatr Neurol 2001; 55: 414–9

    Google Scholar 

  54. Gross-Tsur V, Shalev RS. Reversible language regression as an adverse effect of topiramate treatment in children. Neurology 2004; 62: 299–300

    Article  PubMed  Google Scholar 

  55. Gay PE, Mechman GF, Coskey JS, et al. Behavioral effects of felbamate in childhood epileptic encephalopathy (Lennox-Gastaut syndrome). Psychol Rep 1995; 77: 1208–10

    Article  PubMed  CAS  Google Scholar 

  56. Mikati MA, Choueri R, Khurana DS, et al. Gabapentin in the treatment of refractory partial epilepsy in children with intellectual disability. J Intellect Disabil Res 1998; 42 Suppl 1: 57–62

    PubMed  Google Scholar 

  57. Ferrie CD, Robinson RO, Panayiotopoulos CP. Psychotic and severe behavioural reactions with vigabatrin: a review. Acta Neurol Scand 1996; 93: 1–8

    Article  PubMed  CAS  Google Scholar 

  58. Verrotti A, D’Adamo E, Parisi P, et al. Levetiracetam in childhood epilepsy. Paediatr Drugs 2010; 12: 177–86

    Article  PubMed  Google Scholar 

  59. Das KB, Harris C, Smyth DP, et al. Unusual side effects of lamotrigine therapy. J Child Neurol 2003; 18: 479–80

    Article  PubMed  Google Scholar 

  60. Piña-Garza JE, Elterman RD, Ayala R, et al. Long-term tolerability and efficacy of lamotrigine in infants 1 to 24 months old. J Child Neurol 2008; 23: 853–61

    Article  PubMed  Google Scholar 

  61. Sackellares JC, Krauss G, Sommerville KW, et al. Occurrence of psychosis in patients in patients with epilepsy randomzed to tiagabine or placebo treatment. Epilepsia 2002; 43: 394–8

    Article  PubMed  CAS  Google Scholar 

  62. Messnheimer J. Efficacy and safety of lamotrigine in pediatric patients. J Child Neurol 2002; 17 Suppl 2: 34–42

    Google Scholar 

  63. Conway M, Cubbidge RP, Hosking SL. Visual field severity indices demonstrate dose-dependent visual loss from vigabatrin therapy. Epilepsia 2008; 49: 108–16

    Article  PubMed  Google Scholar 

  64. Kerrick JM, Kelly BJ, Maister BH, et al. Involuntary movement disorders associated with felbamate. Neurology 1995; 45: 185–7

    Article  PubMed  CAS  Google Scholar 

  65. Zesiewicz TA, Sullivan KL, Hauser RA. Chorea induced by lamotrigine [letter]. J Child Neurol 2006; 21: 357

    PubMed  Google Scholar 

  66. Sotero De Menezes MA, Rho JM, Murphy P, et al. Lamotrigine-induced tic disorder: report of five pediatric cases. Epilepsia 2000; 41: 862–7

    Article  Google Scholar 

  67. Gijsen VM, de Wildt SN, Ito S. Probability of rash related to gabapentin therapy in a child. Ann Pharmacother 2009; 43: 387–9

    PubMed  CAS  Google Scholar 

  68. Dooley J, Camfield P, Gordon K, et al. Lamotrigine-induced rash in children. Neurology 1996; 46: 240–2

    Article  PubMed  CAS  Google Scholar 

  69. Kim SC, Seol IJ, Kim SJ. Hypohidrosis-related symptoms in pediatric epileptic patients with topiramate. Pediatr Int 2010; 52: 109–12

    Article  PubMed  CAS  Google Scholar 

  70. Sparagana SP, Strand WR, Adams RC. Felbamate urolithiasis. Epilepsia 2001; 42: 682–5

    Article  PubMed  CAS  Google Scholar 

  71. Lacerda G, Krummel T, Sabourdy C, et al. Optimizing therapy of seizures in patients with renal or hepatic dysfunction. Neurology 2006; 67 Suppl. 4: 28–33

    Article  Google Scholar 

  72. Pearl PL, Vezina LG, Saneto RP, et al. Cerebral MRI abnormalities associated with vigabatrin therapy. Epilepsia 2009; 50: 184–94

    Article  PubMed  CAS  Google Scholar 

  73. Wheless JW, Carmant L, Bebin M, et al. Magnetic resonance imaging abnormalities associated with vigabatrin in patients with epilepsy. Epilepsia 2009; 50: 195–205

    Article  PubMed  CAS  Google Scholar 

  74. Thelle T, Gammelgaard L, Hansen JK, et al. Reversible magnetic resonance imaging and spectroscopy abnormalities in the course of vigabatrin treatment for West syndrome. Eur J Paediatr Neurol 2011; 15: 260–4

    Article  PubMed  Google Scholar 

  75. Beran RG, Berkovic S, Buchanan N, et al. A double-blind, placebo-controlled crossover study of vigabatrin 2 g/day and 3 g/day in uncontrolled partial seizures. Seizure 1996; 5: 259–65

    Article  PubMed  CAS  Google Scholar 

  76. Sachdeo R, Narang-Sachdeo SK, Shumaker RC, et al. Tolerability and pharmacokinetics of monotherapy felbamate doses of 1,200–6,000 mg/day in subjects with epilepsy. Epilepsia 1997; 38: 887–92

    Article  PubMed  CAS  Google Scholar 

  77. Paul E, Conont KD, Dunne IE, et al. Urolithiasis on the ketogenic diet with concurrent topiramate or zonisamide therapy. Epilepsy Res 2010; 90: 151–6

    Article  PubMed  CAS  Google Scholar 

  78. Albsoul-Younes AM, Lasem Ha, Ajlouni SF, et al. Topiramate slow titration: improved efficacy and tolerability. Pediatr Neurol 2004; 31: 349–52

    Article  PubMed  Google Scholar 

  79. Wong IC, Mawer GE, Sander JW. Factors influencing the incidence of lamotrigine-related skin rash. Ann Pharmacother 1999; 33: 1037–42

    Article  PubMed  CAS  Google Scholar 

  80. Zaccara G, Franciotta D, Perucca E. Idiosyncratic adverse reactions to antiepileptic drugs. Epilepsia 2007; 48: 1223–44

    Article  PubMed  CAS  Google Scholar 

  81. Ju C, Uetrecht JP. Mechanism of idiosyncratic drug reactions: reactive metabolites formation, protein binding and the regulation of the immune system. Curr Drug Metab 2002; 3: 367–77

    Article  PubMed  CAS  Google Scholar 

  82. Sadeque AJM, Fisher MB, Korzekwa KR, et al. Human CYP2C9 mediate formation of the hepatotoxin 4-ene-valproic acid. J Pharmacol Exp Ther 1997; 283: 698–703

    PubMed  CAS  Google Scholar 

  83. Johnson TN. The development of drug metabolising enzymes and their influence on the susceptibility to adverse drug reactions in children. Toxicology 2003; 192: 37–48

    Article  PubMed  CAS  Google Scholar 

  84. Walgren JL, Mitchell MD, Thomson DC. Role of metabolism in drug-induced idiosyncratic hepatotoxicity. Crit Rev Toxicol 2005; 35: 325–61

    Article  PubMed  CAS  Google Scholar 

  85. Park BK, Pirmohamed M, Kitteringham NR. The role of drug disposition in drug hypersensitivity: a chemical, molecular and clinical perspective. Chem Res Toxicol 1998; 11: 969–88

    Article  PubMed  CAS  Google Scholar 

  86. Park BK, Coleman JW, Kitteringham NR. Drug disposition and drug hypersensitivity. Biochem Pharmacol 1987; 36: 581–90

    Article  PubMed  CAS  Google Scholar 

  87. Uetrecht J. Newconceptsinimmunologyrelevantto idiosyncratic drug reactions: the “danger hypothesis” and innate immune system. Chem Res Toxicol 1999; 12: 387–95

    Article  PubMed  CAS  Google Scholar 

  88. Matzinger P. The danger model: a renewed sense of self. Science 2002; 296: 301–5

    Article  PubMed  CAS  Google Scholar 

  89. Guengerich FP. Cytochrome P450 and other enzymes in drug metabolism and toxicity. AAPS J 2006; 8(1): E101–11

    Article  PubMed  CAS  Google Scholar 

  90. Anderson GD. Children versus adults: pharmacokinetic and adverse-effect differences. Epilepsia 2002; 43 Suppl. 3: 53–9

    Article  PubMed  CAS  Google Scholar 

  91. Thompson CD, Kinter MT, Macdonald TL. Synthesis and in vitro reactivity of 3-carbamoyl-2-phenylpropionalde-hyde and 2-phenylpropenal: putative reactive metabolites of felbamate. Chem Res Toxicol 1996; 9: 1225–9

    Article  PubMed  CAS  Google Scholar 

  92. Thompson CD, Gulden PH, Macdonald TL. Identification of modified atropaldehyde mercapturic acids in rat and human urine after felbamate administration. Chem Res Toxicol 1997; 10: 457–62

    Article  PubMed  CAS  Google Scholar 

  93. Kapetanovic IM, Torchin CD, Strong JM, et al. Reactivity of atropaldehyde, a felbamate metabolite in human liver tissue in vitro. Chem Biol Interact 2002; 142: 119–34

    Article  PubMed  CAS  Google Scholar 

  94. Dieckhaus CM, Roller SG, Santos WL, et al. Role of glutathione S-transferases A1-1, M1-1, and P1-1 in the detoxification of 2-phenylpropenal, a reactive felbamate metabolite. Chem Res Toxicol 2001; 14: 511–6

    Article  PubMed  CAS  Google Scholar 

  95. Popovic M, Nierkens S, Pieters R, et al. Investigating the role of 2-phenylpropenal in felbamate-induced idiosyncratic drug reactions. Chem Res Toxicol 2004; 17: 1568–76

    Article  PubMed  CAS  Google Scholar 

  96. Pellock JM, Faught E, Leppik IE, et al. Felbamate: consensus of current clinical experience. Epilepsy Res 2006; 71: 89–101

    Article  PubMed  Google Scholar 

  97. Zaccara G, Cincotta M, Borgheresi A, et al. Adverse motor effects induced by antiepileptic drugs. Epileptic Disord 2004; 6: 153–68

    PubMed  CAS  Google Scholar 

  98. Masmoudi K, Gras-Champel V, Masson H, et al. Parkin-sonism and/or cognitive impairment with valproic acid therapy: a report of ten cases. Pharmacopsychiatry 2006; 39: 9–12

    Article  PubMed  CAS  Google Scholar 

  99. Guerrini R, Belmonte A, Canapicchi R, et al. Reversible pseudoatrophy of the brain and mental deterioration associated with valproate treatment. Epilepsia 1998; 39: 27–32

    Article  PubMed  CAS  Google Scholar 

  100. Edwards SG, Hubbard V, Aylett S, et al. Concordance of primary generalised epilepsy and carbamazepine hypersensitivity in monozygotic twins. Postgrad Med 1999; 75: 680–1

    Article  CAS  Google Scholar 

  101. Shear NH, Spielberg SP. Anticonvulsant hypersensitivity syndrome: in vitro risk assessment. J Clin Invest 1988; 82: 1826–32

    Article  PubMed  CAS  Google Scholar 

  102. Ferrell Jr PB, McLeod HL. Carbamazepine, HLA-B*1502 and risk of Stevens-Johnson syndrome and toxic epidermal necrolysis: US FDA recommendations. Pharmacogenomics 2008; 9(10): 1543–6

    Article  PubMed  CAS  Google Scholar 

  103. Chung WH, Hung SI, Hong HS, et al. Medical genetics: a marker for Stevens-Johnson syndrome. Nature 2004; 428: 486

    Article  PubMed  CAS  Google Scholar 

  104. Dreifuss FE, Langer DH. Hepatic considerations in the use of antiepileptic drugs. Epilepsia 1987; 28: S23–9

    Article  PubMed  Google Scholar 

  105. Perucca E. Clinical pharmacokinetics of new generation antiepileptic drugs at the extremes of age. Clin Pharmacokinet 2006; 45: 351–63

    Article  PubMed  CAS  Google Scholar 

  106. Stewart JD, Horvath R, Baruffini E, et al. Polymerase γ gene POLG determines the risk of sodium valproate-induced liver toxicity. Hepatology 2010; 52: 1791–6

    Article  PubMed  CAS  Google Scholar 

  107. Dreifuss FE, Langer DH, Moline KA, et al. Valproic acid hepatic fatalities: II. US experience since 1984. Neurology 1989; 139: 201–7

    Article  Google Scholar 

  108. Hirsch LJ, Arif H, Nahm EA, et al. Cross-sensitivity of skin rashes with antiepileptic drug use. Neurology 2008; 71: 1527–34

    Article  PubMed  CAS  Google Scholar 

  109. Peyrière H, Dereure O, Breton H, et al. Variability in the clinical pattern of cutaneous side effects of drugs with systemic symptoms: does a DRESS syndrome really exist? Br J Dermatol 2006; 155: 422–8

    Article  PubMed  CAS  Google Scholar 

  110. Rzany B, Correia O, Kelly JP, et al. Risk of Stevens-Johnson syndrome and toxic epidermal necrolysis during first weeks of antiepileptic therapy: a case-control study. Study Group of the International Case Control Study on Severe Cutaneous Adverse Reactions. Lancet 1999; 353: 2190–4

    Article  PubMed  CAS  Google Scholar 

  111. Revuz J, Penso D, Roujeau JC, et al. Toxic epidermal necrolysis: clinical findings and prognosis factors in 87 patients. Arch Dermatol 1987; 123: 1160–5

    Article  PubMed  CAS  Google Scholar 

  112. Binaghi M, Koso M, Saiag P, et al. Ocular involvement in Lyell’s syndrome: incidence, evolution, prognosis. Oph-talmologie 1988; 2: 121–2

    CAS  Google Scholar 

  113. Schopf E, Stuhmer A, Rzany B, et al. Toxic epidermal necrolysis and Stevens-Johnson syndrome: an epidemiologic study from West Germany. Arch Dermatol 1991; 127: 839–42

    Article  PubMed  CAS  Google Scholar 

  114. Roujeau JC, Stern RS. Severe adverse cutaneous reactions to drugs. N Engl J Med 1994; 331: 1272–85

    Article  PubMed  CAS  Google Scholar 

  115. Bastuji-Garin S, Rzany B, Stern RS, et al. Clinical classification of cases of toxic epidermal necrolysis, Stevens-Johnson syndrome, and erythema multiforme. Arch Dermatol 1993; 129: 92–6

    Article  PubMed  CAS  Google Scholar 

  116. Kaufman DW, Kelly JP, Anderson T, et al. Evaluation of case reports of aplastic anemia among patients treated with felbamate. Epilepsia 1997; 38: 1265–9

    Article  PubMed  CAS  Google Scholar 

  117. Blackbum SC, Oliart D, Garcia RL, et al. Antiepileptic and blood dyscrasia; a cohort study. Pharmacotherapy 1998; 18: 1277–83

    Google Scholar 

  118. Kaplowitz N. Drug-induced liver injury. Clin Infect Dis 2004; 38 Suppl. 2: S44–8

    Article  PubMed  Google Scholar 

  119. Binek J, Hany A, Heer M. Valproic acid-induced pancreatitis: report of a case and review of literature. J Clin Gastroenterol 1991; 13: 690–3

    Article  PubMed  CAS  Google Scholar 

  120. Zaccara G, Campostrini R, Paganini M, et al. Acute changes of blood ammonia may predict short-term effects of valproic acid. Neurology 1984; 34: 1519–21

    Article  PubMed  CAS  Google Scholar 

  121. Harrison MB, Lyons GR, Landow ER. Phenytoin and dyskinesias: a report of two cases and review of the literature. Mov Disord 1993; 8: 19–27

    Article  PubMed  CAS  Google Scholar 

  122. Fraunfelder FW, Fraunfelder FT, Keates EU. Topiramate, associated, acute, secondary angle-closure glaucoma. Ophthalmology 2004; 111: 109–11

    Article  PubMed  CAS  Google Scholar 

  123. Watanabe T, Yoshikawa H, Yamazaki S, et al. Secondary renal Fanconi syndrome caused by valproate therapy. Pediatr Nephrol 2005; 20: 814–7

    Article  PubMed  Google Scholar 

  124. Guerrini R. Epilepsy in children. Lancet 2006; 367: 499–524

    Article  PubMed  Google Scholar 

  125. Sulzbacher S, Farwell JR, Temkin N, et al. Late cognitive effects of early treatment with phenobarbital. Clin Pediatr 1999; 38: 387–94

    Article  CAS  Google Scholar 

  126. Donati F, Gobbi G, Campistol J, et al. The cognitive effects of oxcarbazepine versus carbamazepine or valproate in newly diagnosed children with partial seizures. Seizure 2007; 16: 670–9

    Article  PubMed  Google Scholar 

  127. Kang HC, Eun BL, Wu LC, et al. The effects on cognitive function and behavioural problems of topiramate compared to carbamazepine as monotherapy for children with benign rolandic epilepsy. Epilepsia 2007; 48: 1716–23

    Article  PubMed  CAS  Google Scholar 

  128. Bootsma HP, Aldenkamp AP, Diepman L, et al. The effect of antiepileptic drugs on cognition: patient perceived cognitive problems of topiramate versus levetiracetam in clinical practice. Epilepsia 2006; 47 Suppl. 2: 24–7

    Article  PubMed  CAS  Google Scholar 

  129. Kossoff EH, Bergey GK, Freeman JM, et al. Levetiracetam psychosis in children with epilepsy. Epilepsia 2001; 42: 1611–3

    Article  PubMed  CAS  Google Scholar 

  130. Best JL, Acheson JF. The natural history of vigabatrin associated visual field defects in patients electing to continue their medication. Eye 2005; 19: 41–4

    Article  PubMed  CAS  Google Scholar 

  131. Kraemer G, Ried S, Landau K, et al. Vigabatrin: reversibility of severe concentric visual field defects after early detection and drug withdrawal. A case report. Epilepsia 2000; 41 Suppl.: 144

    Article  Google Scholar 

  132. Guideline for prescribing vigabatrin in children has been revised. Vigabatrin Paediatric Advisory Group. BMJ 2000; 320(7246): 1404–5

    Article  Google Scholar 

  133. Nousiainen I, Mantyjarvi M, Kälviäinen R. No reversion in vigabatrin-associated field defects. Neurology 2001; 57: 1916–7

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

No sources of funding were used to assist in the preparation of this review. The authors have no conflicts of interest that are directly relevant to the content of this review.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Renzo Guerrini.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Guerrini, R., Zaccara, G., la Marca, G. et al. Safety and Tolerability of Antiepileptic Drug Treatment in Children with Epilepsy. Drug Saf 35, 519–533 (2012). https://doi.org/10.2165/11630700-000000000-00000

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.2165/11630700-000000000-00000

Keywords

Navigation