Outcomes considered
Outcomes most frequently considered were acceptability, perceptions of the robot, user evaluations, implementation, engagement and observations of the child–robot interaction; thus reflecting the early stage of research (see table 2). Some publications explored users’ emotions, for example, anxiety, stress, depression, pain and anger, while others considered physical functioning or performance on learning tasks (eg, number of correct diabetes quiz questions). Other specific outcomes included adherence to a nutritional diary, subjective assessment by a therapist, level of playfulness, neuropsychological performance, communication behaviours, heart rate, satisfaction and enjoyment, empathy, academic performance, the role of the robot in the interaction and challenges encountered.
Findings and conclusions
Most publications reported positive outcomes, including generally high acceptance and liking by children, parents, medical staff, teachers and bystanders. However, these results should be treated cautiously given the predominance of subjective and qualitative data (see table 2).
There was only one RCT,14 conducted with children who had diabetes, which compared the use of a personal robot, a neutral robot and standard care. Diabetes knowledge significantly improved in both robot groups compared with the control group. The personalised robot group scored higher on self-determination theory determinants, rated the robot as more pleasurable, answered more diabetes quiz questions correctly, were more engaged and were more motivated to play the quiz again, compared with the neutral robot group. This finding that personalisation enhanced the interaction was reflected in other publications. For example, different robots can elicit different roles in the user,15 users express different preferences to certain robots15 16 and different user profiles can be developed to improve child–robot interactions.17 The few publications that reported negative findings suggested that the robot did not successfully meet the needs of the children and that better matching was required.18 19
Although most publications reported positive outcomes, one study20 found the child–robot interaction to be negative, suggesting that the robot encounter was stressful. Changes to the study protocol (eg, introducing the child to the robot in a group context rather than alone) were suggested to resolve this issue.
Some publications explored implementability and technical functioning, identifying challenges including time and assistance required by a therapist, the robot falling over and halting interaction and difficulty with speech interpretation.21–23 A predominant conclusion drawn was that further development and testing of the robots was required.
Several studies employed statistical significance testing, and the results are described below. These studies, as well as other non-statistical studies, may help generate more specific hypotheses to be investigated in future controlled study designs, but do not necessarily in and of themselves provide evidence of benefit. One study showed significant reductions in anxiety, anger and depression in patients with cancer in a social robot-assisted therapy group compared with a psychotherapy (control) group.24 25 In other work, hospitalised children who interacted with a robot together with their parent demonstrated greater decreases in pain and anxiety compared with those who interacted with the robot alone.26 Children with cerebral palsy had a significantly higher interaction level with an exercise demonstration robot (although worse motor performance) than typically developing children, demonstrating the feasibility of the robot for use as a motivating and engaging therapeutic tool.27 Children interacted significantly faster with robot characters than with a text interface and significantly valued the robot characters more.28 In a related study, children displayed no differences in performance of a learning task or motivation levels when comparing their use of a physical robot or virtual robot, however, the physical robot attracted more attention than the virtual agent and was preferred.29 Robot interactions increased adherence to a nutritional diary compared with a no-robot condition among children with diabetes.30 An online survey about hypothetical robot therapy for children with disruptive behavioural problems found that while the treatment was considered more acceptable than no treatment, it was less acceptable than internet-based treatment.31 Other publications conducted significance testing, but did not find significant effects.18 32