Discussion
Our study found an overall mortality rate of 3.1% and SNDO in 16.4% of neonates undergoing surgery for CGSC. These findings are similar to a recent study that reported an incidence of 7%–14% in various domains of assessment at 3 years among 124 children who underwent surgery for non-cardiac conditions in the neonatal period.2 While the mean GQ of 96.3 in our cohort might not appear too low, it is important to note that the GMDS-II norms are based on population sample more than two decades ago. It is well known that developmental quotients and intelligence quotients in the general population increase by 2–3 points each decade (Flynn effect).19 If assessed using the GMDS-II tools, healthy 12-month-old infants during the study period of 2005–2014 would probably have scored a mean of 103 rather than 100.
Since the study spanned over 10 years (January 2005 to December 2014), advances in anaesthesia, surgical techniques, intensive care management, and changes to family and societal environment during that period could have influenced the in-hospital clinical outcomes and 1-year developmental outcomes of study infants. Contemporary multicentre studies with adequate sample size are needed enhance knowledge in this area.
While many variables were found to be associated with increased risk of SNDO on univariable analysis, only lower birthweight z scores and longer duration of hospital stay were found to be having significant association on multivariable analysis. Lower birthweight z scores indicate fetal growth restriction and prolonged hospitalisation is usually related to the complex nature of the underlying surgical condition. Hence their association with adverse neurodevelopmental outcomes is not unexpected. The width of the CI for birthweight z-scores was very wide, ranging between a drop in the odds between 2% and 50%. The probable reason for this wide range could be related to the timing of intrauterine growth restriction (IUGR). For the same degree of IUGR, the one that starts early during pregnancy is known to have worse outcomes compared with late gestation IUGR.
Each additional day of stay in the hospital resulted in a change in the odds of SNDO by 3%. Many surgical infants stay for a protracted period of time in the hospital and hence these odds are likely to be clinically significant.
The burden of HAI and HABSI in neonates with CGSC has not been explored adequately. Donnell et al and van Saene et al conducted a prospective study of surgical infants<6 months to find infection rates.20 21 Thirty-two infants developed blood culture positive sepsis (15%); predominant micro-organisms (86%) were coagulase-negative staphylococci and enterococci. Other pathogens, including aerobic gram-negative bacilli, were responsible for the remainder. They suggested that gut translocation was the main factor behind sepsis in surgical infants rather than central lines and cautioned that prevention is unlikely to be successful if abnormal gut flora is ignored.21 Another study by Bishay et al reported that 31 out of 112 surgical infants (28%) had a total of 65 episodes of septicaemia.22
In very preterm infants, it is well established that neonatal sepsis is associated with higher risk of adverse neurodevelopmental outcomes. A recent systematic review by Cai et al23 found that preterm infants with neonatal sepsis were at a higher risk of neurodevelopmental impairments such as cerebral palsy and neurosensory deficits, compared with infants without sepsis (OR 3.18; 95% CI 2.29 to 4.41).23 Hence, we had expected similar findings in our cohort of surgical infants. However, in our study, HAI was not associated with increased risk of SNDO, either on univariable or multivariable analysis. Similarly, higher levels of CRPs were not associated with SNDO irrespective of the timing in relation to the surgeries. This could be related to the resilience of the brain of late preterm and term infants to the harmful effects of infection and inflammation, unlike the vulnerable extremely preterm infants. However, prolonged duration of antibiotic therapy, which could be a surrogate marker of clinically suspected infection, was associated with SNDO on univariable, but not multivariable analysis. Further studies with larger sample size and a longer duration of follow-up beyond 1 year of age are needed to explore the role of infection and inflammation in late preterm and term infants undergoing neonatal surgery.
The harmful effect of exposures to general anaesthesia on developing brain is an area of debate and active research.24 25 While animal studies have consistently shown general anaesthesia to be toxic to the developing brain,26 one recent large RCT27 and a large prospective cohort study28 found no significant association. Both these studies evaluated a single exposure to general anaesthesia, and hence do not address the issue of repeated exposures. A recent large data linkage study found that children exposed to general anaesthesia before 4 years have poorer development outcomes at school entry and school performance.29 In another cohort study,30 children who had multiple exposure to gestational age (GA) before 3 years of age scored 1.3 points (95% CI −3.8 to 1.2; p=0.32) less than unexposed children on intelligence tests; children who had one exposure to GA scored 0.5 points (95% CI −2.8 to 1.9; p=0.70) less than unexposed children. However, the parents of children who had multiple exposure to GA reported increased problems related to executive function, behaviour and reading.30 In our cohort, increasing episodes of general anaesthesia were associated with higher risk of SNDO on univariable analysis, but not on multivariable analysis. Further studies with long duration of follow-up are needed in this area.
While we found lower birthweight z scores and prolonged hospital stay to be associated with increased risk of SNDO, one should not ignore the possibility that the underlying surgical condition in itself could be an important risk factor that drives other morbidities leading to SNDO. In our cohort, multiple gut anomalies and oesophageal atresia had the highest incidence of SNDO (42.8% and 37%, respectively), which is not unexpected because these infants have significant in-hospital and postdischarge morbidities, which puts them at a higher risk of SNDO.
One of the limitations of our study was the shorter duration of follow-up of 1 year and the findings may not track subsequently. In a recent study, Fairbairn et al reported that Bayley-III results for all domains at 1 year of age were a weak predictor of outcomes at 3 years of age in infants who had early major cardiac and non-cardiac surgery and healthy infants.31 Hence all infants, irrespective of the results of developmental assessments at 1 year should be followed with formal developmental assessments at least until 5 years of age. At the same time, infants identified as high risk based on the 1-year assessments could be provided early developmental interventions to optimise their outcomes. Only recently, we have commenced routine developmental follow-up until 2 years of age with Bayley Scales of Infant Development to all infants undergoing surgery in the neonatal period.
Surgical infants who need prolonged duration of mechanical ventilation are at higher risk of hypoxic episodes and hence worse developmental outcomes. At the same time, prolonged ventilation could be a maker of severity of the underlying anomaly. A limitation of our study was the lack of reliable information on the duration of mechanical ventilation among the study infants.
The other limitations of our study were: (1) retrospective design without healthy controls, (2) the indication for doing CRP levels was at the discretion of clinicians rather than based on a standardised protocol, (3) full information on developmental outcomes was missing from nearly 35% of survivors, (4) lack of information on sociodemographic status of family and (5) missing information about duration of general anaesthesia which can have significant influence on developmental outcomes. The data were from a single centre from a high-income country and hence the findings may not be generalisable. The main strength of the study is the large sample size of surgical infants and the use of regression analyses to adjust for confounders.